Evaluate ∫ ∫ ∫ X 2YZ D X D Y D Z Over the Volume Bounded by Planes X=0,Y=0, Z=0 and X + Y + Z = 1
"=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1-x}x^2y[\\dfrac{z^2}{2}]\\begin{matrix}\n 1-x-y\\\\\n 0\n\\end{matrix}dydx"
"=\\dfrac{1}{2}\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1-x}x^2y(1-x-y)^2dydx"
"=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1-x}\\dfrac{x^2y}{2}(1+x^2+y^2-2x-2y+2xy)dydx"
"=\\displaystyle\\int_{0}^{1}\\dfrac{x^2}{2}[\\dfrac{(1+x^2-2x)y^2}{2}+\\dfrac{y^4}{4}+\\dfrac{(-2+2x)y^3}{3}]\\begin{matrix}\n 1-x \\\\\n 0\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{1}\\dfrac{x^2}{2}(\\dfrac{1}{2}+\\dfrac{1}{4}-\\dfrac{2}{3})(1-x)^4dx"
"=\\dfrac{1}{24}\\displaystyle\\int_{0}^{1}x^2(1-4x+6x^2-4x^3+x^4)dx"
"=\\dfrac{1}{24}[\\dfrac{x^3}{3}-x^4+\\dfrac{6x^5}{5}-\\dfrac{2x^6}{3}+\\dfrac{x^7}{7}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{2520}"
Comments
Leave a comment