Question 2
(a) Given that A ~ = (x + 2y + 4z)ˆ
i + (2x - 3y- z)ˆj +(4x-y + 2z)kˆ
(i). Show that the vector field A ~ is irrotational
(ii). Find the scalar potential φ such that A~ = ∇φ, if φ(0, 0, 0) = 1
ANSWER.
(i) The vector field "\\overrightarrow { A }" is irrotational because"curl\\ \\overrightarrow { A } =\\ \\nabla \\times \\overrightarrow { A } =\\left| \\begin{matrix} \\overrightarrow { i } & \\overrightarrow { j } & \\overrightarrow { k } \\quad \\\\ \\frac { \\partial }{ \\partial x } & \\frac { \\partial }{ \\partial y } & \\frac { \\partial }{ \\partial z } \\\\ (x+2y+4z) & \\left( 2x-3y-z \\right) & \\left( 4x-y+2z \\right) \\end{matrix} \\right| ="
"=\\left[ \\frac { \\partial \\left( 4x-y+2z \\right) }{ \\partial y } -\\frac { \\partial \\left( 2x-3y-z \\right) }{ \\partial z } \\right] \\overrightarrow { i } +\\left[ \\frac { \\partial (x+2y+4z) }{ \\partial z } -\\frac { \\partial \\left( 4x-y+2z \\right) }{ \\partial x } \\right] \\overrightarrow { j } +\\left[ \\frac { \\partial \\left( 2x-3y-z \\right) }{ \\partial x } -\\frac { \\partial (x+2y+4z) }{ \\partial y } \\right] \\overrightarrow { k } =\n\\\\ =\\left( -1+1 \\right) \\overrightarrow { i } +\\left( 4-4 \\right) \\overrightarrow { j } +\\left( 2-2 \\right) \\overrightarrow { k } =0\\overrightarrow { i } +0\\overrightarrow { j } +0\\overrightarrow { k } .\\\\"
(ii) Therefore , there is scalar potential "\\varphi" such that "\\overrightarrow { A } =\\nabla \\varphi" :
"\\frac { \\partial \\varphi }{ \\partial x } =x+2y+4z\\Rightarrow \\varphi \\left( x,y,z \\right) =\\frac { { x }^{ 2 } }{ 2 } +2xy+4zx+\\alpha (y,z)\\Rightarrow \\frac { \\partial \\varphi }{ \\partial y } =2x+\\frac { \\partial \\alpha (y,z) }{ \\partial y } \\\\"
Since "\\frac { \\partial \\varphi }{ \\partial y } =2x-3y-z\\\\" , then "2x+\\frac { \\partial \\alpha (y,z) }{ \\partial y } =2x-3y-z\\\\" or "\\alpha (y,z)=-\\frac { 3{ y }^{ 2 } }{ 2 } -zy+\\ \\beta (z)\\\\" and "\\varphi \\left( x,y,z \\right) =\\frac { { x }^{ 2 } }{ 2 } +2xy+4zx-\\frac { 3{ y }^{ 2 } }{ 2 } -zy+\\ \\beta (z)\\\\" .
Thus, "\\frac { \\partial \\varphi }{ \\partial z } =4x-y+{ \\beta }^{ ' }{ (z) }=4x-y+2z\\\\" "\\Rightarrow { \\beta }^{ ' }{ (z)=2z },\\quad \\beta (z)=\\ { z }^{ 2 }+\\gamma \\\\" .
Finally, we have "\\varphi \\left( x,y,z \\right) =\\frac { { x }^{ 2 } }{ 2 } +2xy+4zx-\\frac { 3{ y }^{ 2 } }{ 2 } -zy+{ z }^{ 2 }+\\gamma \\\\" .
Since "\\varphi \\left( 0,0,0 \\right) =1" ,then "\\gamma =1\\ .\\\\" So
"\\varphi \\left( x,y,z \\right) =\\frac { { x }^{ 2 } }{ 2 } +2xy+4zx-\\frac { 3{ y }^{ 2 } }{ 2 } -zy+{ z }^{ 2 }+1.\\\\"
Comments
Leave a comment