If A~ = 2yˆi - zˆj + 3xkˆ
(i). Find the unit vectors eˆr, eˆθ and eˆz of a cylindrical coordinates in termsof ˆi, ˆj and kˆ.
(ii). Solve for ˆi, ˆj and kˆ in terms of eˆr, eˆθ and eˆz
(iii). Represent the vector A~ in cylindrical coordinates and determine Ar, Aθ
and Az
Solutiom;
a)
The position vector is given by;
"\\vec{r}=x\\hat{i}+y\\hat{j}+z\\hat{k}"
In cylindrical coordinates;
"\\vec{r}=rcos\\theta\\hat{i}+rsin\\theta\\hat{j}+z\\hat{k}"
Hence,we find ;
"\\hat{e}_r=\\frac{\\frac{d\\vec{r}}{dr}}{|\\frac{d\\vec{r}}{dr}|}" "=\\frac{cos\\theta\\hat{i}+sin\\theta\\hat{j}}{\\sqrt{cos^2\\theta+sin^2\\theta}}" "\\hat{e}_r=cos\\theta\\hat{i}+sin\\theta{j}"
"\\hat{e}_{\\theta}=\\frac{\\frac{d\\vec{r}}{d\\theta}}{|\\frac{d\\vec{r}}{d\\theta}|}" "=\\frac{-rsin\\theta\\hat{i}+rcos\\theta\\hat{j}}{\\sqrt {r^2cos^2\\theta+r^2sin^2\\theta}}"
"\\hat{e}_{\\theta}=-sin\\theta\\hat{i}+cos\\theta\\hat{j}"
"\\hat{e}_z=\\frac{\\frac{d\\vec{r}}{dz}}{|\\frac{d\\vec{r}}{dz}|}" "=\\frac{\\hat{k}}{1}=\\hat{k}"
b)
As calculated;
"\\hat{e}_r=cos\\theta\\hat{i}+sin\\theta\\hat{j}" ....(i)
"\\hat{e}_{\\theta}=-sin\\theta\\hat{i}+cos\\theta\\hat{j}" ...(ii)
"\\hat{e}_z=\\hat{k}"
Multiply (i) by "cos\\theta" and (ii) by "sin\\theta" and subtract;
"cos\\theta\\hat{e}_r=cos^2\\theta\\hat{i}+cos\\theta sin\\theta\\hat{j}"
"-sin\\theta\\hat{e}_\\theta=-sin^2\\theta\\hat{i}+cos\\theta sin\\theta\\hat{j}"
"\\overline{cos\\theta\\hat{e}_r-sin\\theta\\hat{e}_{\\theta}=(cos^2\\theta+sin^2\\theta)\\hat{i}}"
Hence,
"\\hat{i}=cos\\theta\\hat{e}_r-sin\\theta\\hat e_{\\theta}"
Multiply (i) with "sin\\theta" and (ii) with "cos\\theta" and add;
"sin\\theta\\hat e_r=sin\\theta cos\\theta\\hat i+sin^2\\theta\\hat j"
"+cos\\theta\\hat e_{\\theta}=-sin\\theta cos\\theta\\hat i+cos^2\\theta\\hat j"
"\\overline{sin\\theta \\hat e_r+cos\\theta\\hat e_{\\theta}=(sin^2\\theta+cos^2\\theta)\\hat j}"
Hence,
"\\hat j=sin\\theta\\hat e_r+cos\\theta\\hat e_{\\theta}"
From (iii);
"\\hat k=\\hat e_z"
c)
Given;
"\\vec{A}=2y\\hat i-z\\hat j+3x\\hat k"
In cylindrical coordinates;
"\\vec{A}=2(rsin\\theta)(cos\\theta\\hat e_r-sin\\theta\\hat e_{\\theta})-z(sin\\theta\\hat e_r+cos\\theta\\hat e_{\\theta})+3(rcos\\theta)\\hat e_z"
By distribution;
"\\vec{A}=(2rsin\\theta cos\\theta-zsin\\theta)\\hat e_r-(2rsin^2\\theta+zcos\\theta)\\hat e_{\\theta}+3rcos\\theta\\hat e_z"
From which;
"A_r=2rcos\\theta sin\\theta-zsin\\theta"
"A_{\\theta}=-2rsin^2\\theta-zcos\\theta"
"A_z=3rcos\\theta"
Comments
Leave a comment