Question #224059

If A~ = 2yˆi - zˆj + 3xkˆ

(i). Find the unit vectors eˆr, eˆθ and eˆz of a cylindrical coordinates in termsof ˆi, ˆj and kˆ.

(ii). Solve for ˆi, ˆj and kˆ in terms of eˆr, eˆθ and eˆz

(iii). Represent the vector A~ in cylindrical coordinates and determine Ar, Aθ

and Az





1
Expert's answer
2021-08-09T16:07:36-0400

Solutiom;

a)

The position vector is given by;

r=xi^+yj^+zk^\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}

In cylindrical coordinates;

r=rcosθi^+rsinθj^+zk^\vec{r}=rcos\theta\hat{i}+rsin\theta\hat{j}+z\hat{k}

Hence,we find ;

e^r=drdrdrdr\hat{e}_r=\frac{\frac{d\vec{r}}{dr}}{|\frac{d\vec{r}}{dr}|} =cosθi^+sinθj^cos2θ+sin2θ=\frac{cos\theta\hat{i}+sin\theta\hat{j}}{\sqrt{cos^2\theta+sin^2\theta}} e^r=cosθi^+sinθj\hat{e}_r=cos\theta\hat{i}+sin\theta{j}

e^θ=drdθdrdθ\hat{e}_{\theta}=\frac{\frac{d\vec{r}}{d\theta}}{|\frac{d\vec{r}}{d\theta}|} =rsinθi^+rcosθj^r2cos2θ+r2sin2θ=\frac{-rsin\theta\hat{i}+rcos\theta\hat{j}}{\sqrt {r^2cos^2\theta+r^2sin^2\theta}}

e^θ=sinθi^+cosθj^\hat{e}_{\theta}=-sin\theta\hat{i}+cos\theta\hat{j}

e^z=drdzdrdz\hat{e}_z=\frac{\frac{d\vec{r}}{dz}}{|\frac{d\vec{r}}{dz}|} =k^1=k^=\frac{\hat{k}}{1}=\hat{k}

b)

As calculated;

e^r=cosθi^+sinθj^\hat{e}_r=cos\theta\hat{i}+sin\theta\hat{j} ....(i)

e^θ=sinθi^+cosθj^\hat{e}_{\theta}=-sin\theta\hat{i}+cos\theta\hat{j} ...(ii)

e^z=k^\hat{e}_z=\hat{k}

Multiply (i) by cosθcos\theta and (ii) by sinθsin\theta and subtract;

cosθe^r=cos2θi^+cosθsinθj^cos\theta\hat{e}_r=cos^2\theta\hat{i}+cos\theta sin\theta\hat{j}

sinθe^θ=sin2θi^+cosθsinθj^-sin\theta\hat{e}_\theta=-sin^2\theta\hat{i}+cos\theta sin\theta\hat{j}

cosθe^rsinθe^θ=(cos2θ+sin2θ)i^\overline{cos\theta\hat{e}_r-sin\theta\hat{e}_{\theta}=(cos^2\theta+sin^2\theta)\hat{i}}

Hence,

i^=cosθe^rsinθe^θ\hat{i}=cos\theta\hat{e}_r-sin\theta\hat e_{\theta}

Multiply (i) with sinθsin\theta and (ii) with cosθcos\theta and add;

sinθe^r=sinθcosθi^+sin2θj^sin\theta\hat e_r=sin\theta cos\theta\hat i+sin^2\theta\hat j

+cosθe^θ=sinθcosθi^+cos2θj^+cos\theta\hat e_{\theta}=-sin\theta cos\theta\hat i+cos^2\theta\hat j

sinθe^r+cosθe^θ=(sin2θ+cos2θ)j^\overline{sin\theta \hat e_r+cos\theta\hat e_{\theta}=(sin^2\theta+cos^2\theta)\hat j}

Hence,

j^=sinθe^r+cosθe^θ\hat j=sin\theta\hat e_r+cos\theta\hat e_{\theta}

From (iii);

k^=e^z\hat k=\hat e_z

c)

Given;

A=2yi^zj^+3xk^\vec{A}=2y\hat i-z\hat j+3x\hat k

In cylindrical coordinates;

A=2(rsinθ)(cosθe^rsinθe^θ)z(sinθe^r+cosθe^θ)+3(rcosθ)e^z\vec{A}=2(rsin\theta)(cos\theta\hat e_r-sin\theta\hat e_{\theta})-z(sin\theta\hat e_r+cos\theta\hat e_{\theta})+3(rcos\theta)\hat e_z

By distribution;

A=(2rsinθcosθzsinθ)e^r(2rsin2θ+zcosθ)e^θ+3rcosθe^z\vec{A}=(2rsin\theta cos\theta-zsin\theta)\hat e_r-(2rsin^2\theta+zcos\theta)\hat e_{\theta}+3rcos\theta\hat e_z

From which;

Ar=2rcosθsinθzsinθA_r=2rcos\theta sin\theta-zsin\theta

Aθ=2rsin2θzcosθA_{\theta}=-2rsin^2\theta-zcos\theta

Az=3rcosθA_z=3rcos\theta






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS