Solutiom;
a)
The position vector is given by;
r=xi^+yj^+zk^
In cylindrical coordinates;
r=rcosθi^+rsinθj^+zk^
Hence,we find ;
e^r=∣drdr∣drdr =cos2θ+sin2θcosθi^+sinθj^ e^r=cosθi^+sinθj
e^θ=∣dθdr∣dθdr =r2cos2θ+r2sin2θ−rsinθi^+rcosθj^
e^θ=−sinθi^+cosθj^
e^z=∣dzdr∣dzdr =1k^=k^
b)
As calculated;
e^r=cosθi^+sinθj^ ....(i)
e^θ=−sinθi^+cosθj^ ...(ii)
e^z=k^
Multiply (i) by cosθ and (ii) by sinθ and subtract;
cosθe^r=cos2θi^+cosθsinθj^
−sinθe^θ=−sin2θi^+cosθsinθj^
cosθe^r−sinθe^θ=(cos2θ+sin2θ)i^
Hence,
i^=cosθe^r−sinθe^θ
Multiply (i) with sinθ and (ii) with cosθ and add;
sinθe^r=sinθcosθi^+sin2θj^
+cosθe^θ=−sinθcosθi^+cos2θj^
sinθe^r+cosθe^θ=(sin2θ+cos2θ)j^
Hence,
j^=sinθe^r+cosθe^θ
From (iii);
k^=e^z
c)
Given;
A=2yi^−zj^+3xk^
In cylindrical coordinates;
A=2(rsinθ)(cosθe^r−sinθe^θ)−z(sinθe^r+cosθe^θ)+3(rcosθ)e^z
By distribution;
A=(2rsinθcosθ−zsinθ)e^r−(2rsin2θ+zcosθ)e^θ+3rcosθe^z
From which;
Ar=2rcosθsinθ−zsinθ
Aθ=−2rsin2θ−zcosθ
Az=3rcosθ
Comments