Solutiom;
a)
The position vector is given by;
r ⃗ = x i ^ + y j ^ + z k ^ \vec{r}=x\hat{i}+y\hat{j}+z\hat{k} r = x i ^ + y j ^ + z k ^
In cylindrical coordinates;
r ⃗ = r c o s θ i ^ + r s i n θ j ^ + z k ^ \vec{r}=rcos\theta\hat{i}+rsin\theta\hat{j}+z\hat{k} r = rcos θ i ^ + rs in θ j ^ + z k ^
Hence,we find ;
e ^ r = d r ⃗ d r ∣ d r ⃗ d r ∣ \hat{e}_r=\frac{\frac{d\vec{r}}{dr}}{|\frac{d\vec{r}}{dr}|} e ^ r = ∣ d r d r ∣ d r d r = c o s θ i ^ + s i n θ j ^ c o s 2 θ + s i n 2 θ =\frac{cos\theta\hat{i}+sin\theta\hat{j}}{\sqrt{cos^2\theta+sin^2\theta}} = co s 2 θ + s i n 2 θ cos θ i ^ + s in θ j ^ e ^ r = c o s θ i ^ + s i n θ j \hat{e}_r=cos\theta\hat{i}+sin\theta{j} e ^ r = cos θ i ^ + s in θ j
e ^ θ = d r ⃗ d θ ∣ d r ⃗ d θ ∣ \hat{e}_{\theta}=\frac{\frac{d\vec{r}}{d\theta}}{|\frac{d\vec{r}}{d\theta}|} e ^ θ = ∣ d θ d r ∣ d θ d r = − r s i n θ i ^ + r c o s θ j ^ r 2 c o s 2 θ + r 2 s i n 2 θ =\frac{-rsin\theta\hat{i}+rcos\theta\hat{j}}{\sqrt {r^2cos^2\theta+r^2sin^2\theta}} = r 2 co s 2 θ + r 2 s i n 2 θ − rs in θ i ^ + rcos θ j ^
e ^ θ = − s i n θ i ^ + c o s θ j ^ \hat{e}_{\theta}=-sin\theta\hat{i}+cos\theta\hat{j} e ^ θ = − s in θ i ^ + cos θ j ^
e ^ z = d r ⃗ d z ∣ d r ⃗ d z ∣ \hat{e}_z=\frac{\frac{d\vec{r}}{dz}}{|\frac{d\vec{r}}{dz}|} e ^ z = ∣ d z d r ∣ d z d r = k ^ 1 = k ^ =\frac{\hat{k}}{1}=\hat{k} = 1 k ^ = k ^
b)
As calculated;
e ^ r = c o s θ i ^ + s i n θ j ^ \hat{e}_r=cos\theta\hat{i}+sin\theta\hat{j} e ^ r = cos θ i ^ + s in θ j ^ ....(i)
e ^ θ = − s i n θ i ^ + c o s θ j ^ \hat{e}_{\theta}=-sin\theta\hat{i}+cos\theta\hat{j} e ^ θ = − s in θ i ^ + cos θ j ^ ...(ii)
e ^ z = k ^ \hat{e}_z=\hat{k} e ^ z = k ^
Multiply (i) by c o s θ cos\theta cos θ and (ii) by s i n θ sin\theta s in θ and subtract;
c o s θ e ^ r = c o s 2 θ i ^ + c o s θ s i n θ j ^ cos\theta\hat{e}_r=cos^2\theta\hat{i}+cos\theta sin\theta\hat{j} cos θ e ^ r = co s 2 θ i ^ + cos θ s in θ j ^
− s i n θ e ^ θ = − s i n 2 θ i ^ + c o s θ s i n θ j ^ -sin\theta\hat{e}_\theta=-sin^2\theta\hat{i}+cos\theta sin\theta\hat{j} − s in θ e ^ θ = − s i n 2 θ i ^ + cos θ s in θ j ^
c o s θ e ^ r − s i n θ e ^ θ = ( c o s 2 θ + s i n 2 θ ) i ^ ‾ \overline{cos\theta\hat{e}_r-sin\theta\hat{e}_{\theta}=(cos^2\theta+sin^2\theta)\hat{i}} cos θ e ^ r − s in θ e ^ θ = ( co s 2 θ + s i n 2 θ ) i ^
Hence,
i ^ = c o s θ e ^ r − s i n θ e ^ θ \hat{i}=cos\theta\hat{e}_r-sin\theta\hat e_{\theta} i ^ = cos θ e ^ r − s in θ e ^ θ
Multiply (i) with s i n θ sin\theta s in θ and (ii) with c o s θ cos\theta cos θ and add;
s i n θ e ^ r = s i n θ c o s θ i ^ + s i n 2 θ j ^ sin\theta\hat e_r=sin\theta cos\theta\hat i+sin^2\theta\hat j s in θ e ^ r = s in θ cos θ i ^ + s i n 2 θ j ^
+ c o s θ e ^ θ = − s i n θ c o s θ i ^ + c o s 2 θ j ^ +cos\theta\hat e_{\theta}=-sin\theta cos\theta\hat i+cos^2\theta\hat j + cos θ e ^ θ = − s in θ cos θ i ^ + co s 2 θ j ^
s i n θ e ^ r + c o s θ e ^ θ = ( s i n 2 θ + c o s 2 θ ) j ^ ‾ \overline{sin\theta \hat e_r+cos\theta\hat e_{\theta}=(sin^2\theta+cos^2\theta)\hat j} s in θ e ^ r + cos θ e ^ θ = ( s i n 2 θ + co s 2 θ ) j ^
Hence,
j ^ = s i n θ e ^ r + c o s θ e ^ θ \hat j=sin\theta\hat e_r+cos\theta\hat e_{\theta} j ^ = s in θ e ^ r + cos θ e ^ θ
From (iii);
k ^ = e ^ z \hat k=\hat e_z k ^ = e ^ z
c)
Given;
A ⃗ = 2 y i ^ − z j ^ + 3 x k ^ \vec{A}=2y\hat i-z\hat j+3x\hat k A = 2 y i ^ − z j ^ + 3 x k ^
In cylindrical coordinates;
A ⃗ = 2 ( r s i n θ ) ( c o s θ e ^ r − s i n θ e ^ θ ) − z ( s i n θ e ^ r + c o s θ e ^ θ ) + 3 ( r c o s θ ) e ^ z \vec{A}=2(rsin\theta)(cos\theta\hat e_r-sin\theta\hat e_{\theta})-z(sin\theta\hat e_r+cos\theta\hat e_{\theta})+3(rcos\theta)\hat e_z A = 2 ( rs in θ ) ( cos θ e ^ r − s in θ e ^ θ ) − z ( s in θ e ^ r + cos θ e ^ θ ) + 3 ( rcos θ ) e ^ z
By distribution;
A ⃗ = ( 2 r s i n θ c o s θ − z s i n θ ) e ^ r − ( 2 r s i n 2 θ + z c o s θ ) e ^ θ + 3 r c o s θ e ^ z \vec{A}=(2rsin\theta cos\theta-zsin\theta)\hat e_r-(2rsin^2\theta+zcos\theta)\hat e_{\theta}+3rcos\theta\hat e_z A = ( 2 rs in θ cos θ − zs in θ ) e ^ r − ( 2 rs i n 2 θ + zcos θ ) e ^ θ + 3 rcos θ e ^ z
From which;
A r = 2 r c o s θ s i n θ − z s i n θ A_r=2rcos\theta sin\theta-zsin\theta A r = 2 rcos θ s in θ − zs in θ
A θ = − 2 r s i n 2 θ − z c o s θ A_{\theta}=-2rsin^2\theta-zcos\theta A θ = − 2 rs i n 2 θ − zcos θ
A z = 3 r c o s θ A_z=3rcos\theta A z = 3 rcos θ
Comments