▽rn=nrn−2r
r=xi^+yj^+zk^
∣r∣n=rn=nx2+y2+z2
▽=dxdi^+dydj^+dzdk^
▽rn=dxdrni^+dydrnj^+dzdrnk^
dxdrn=dxd(x2+y2+z2)2n
=2n(x2+y2+z2)2n−1dxd(x2+y2+z2)
=2n(x2+y2+z2)2n−12x
=n(x2+y2+z2)2n−1x
∣∣y
dydrn=dyd(x2+y2+z2)2n
=n(x2+y2+z2)2n−1y
And;
dzdrn=dzd(x2+y2+z2)2n
=n(x2+y2+z2)2n−1z
Hence;
▽rn=n(x2+y2+z2)2n−1(xi^+yj^+zk^)▽rn=n(x2+y2+z2)2n−1r
▽rn=n(x2+y2+z2)2n−2r
Thus,
▽rn=nrn−2r
Comments