Show that βπn = ππn-2"\\vec r"
"\\triangledown r^{n}=nr^{n-2}\\vec r"
"\\vec r=x\\hat i+y\\hat j+z\\hat k"
"|\\vec r|^{n}=r^{n}=\\sqrt [n] {x^{2}+y^{2}+z^{2}}"
"\\triangledown=\\frac{d}{dx}\\hat i+\\frac{d}{dy}\\hat j+\\frac{d}{dz}\\hat k"
"\\triangledown r^{n}=\\frac{dr^{n}}{dx}\\hat i+\\frac{dr^{n}}{dy}\\hat j+\\frac{dr^{n}}{dz}\\hat k"
"\\frac{dr^{n}}{dx}=\\frac{d(x^{2}+y^{2}+z^{2})^{\\frac{n}{2}}}{dx}"
"=\\frac{n}{2}(x^{2}+y^{2}+z^{2})^{{\\frac{n}{2}}-1}\\frac{d}{dx}(x^{2}+y^{2}+z^{2})"
"=\\frac{n}{2}(x^{2}+y^{2}+z^{2})^{{\\frac{n}{2}}-1}2x"
"=n(x^{2}+y^{2}+z^{2})^{{\\frac{n}{2}-1}}x"
"||y"
"\\frac{dr^{n}}{dy}=\\frac{d(x^{2}+y^{2}+z^{2})^{\\frac{n}{2}}}{dy}"
"=n(x^{2}+y^{2}+z^{2})^{\\frac{n}{2}-1}y"
And;
"\\frac{dr^{n}}{dz}=\\frac{d(x^{2}+y^{2}+z^{2})^{\\frac{n}{2}}}{dz}"
"=n(x^{2}+y^{2}+z^{2})^{\\frac{n}{2}-1}z"
Hence;
"\\triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\\frac{n}{2}-1}(x\\hat i+y\\hat j+z\\hat k)\\newline \\triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\\frac{n}{2}-1}\\vec r"
"\\triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\\frac{n-2}{2}}\\vec r"
Thus,
"\\triangledown r^{n}=nr^{n-2}\\vec r"
Comments
Leave a comment