▽ r n = n r n − 2 r ⃗ \triangledown r^{n}=nr^{n-2}\vec r ▽ r n = n r n − 2 r
r ⃗ = x i ^ + y j ^ + z k ^ \vec r=x\hat i+y\hat j+z\hat k r = x i ^ + y j ^ + z k ^
∣ r ⃗ ∣ n = r n = x 2 + y 2 + z 2 n |\vec r|^{n}=r^{n}=\sqrt [n] {x^{2}+y^{2}+z^{2}} ∣ r ∣ n = r n = n x 2 + y 2 + z 2
▽ = d d x i ^ + d d y j ^ + d d z k ^ \triangledown=\frac{d}{dx}\hat i+\frac{d}{dy}\hat j+\frac{d}{dz}\hat k ▽ = d x d i ^ + d y d j ^ + d z d k ^
▽ r n = d r n d x i ^ + d r n d y j ^ + d r n d z k ^ \triangledown r^{n}=\frac{dr^{n}}{dx}\hat i+\frac{dr^{n}}{dy}\hat j+\frac{dr^{n}}{dz}\hat k ▽ r n = d x d r n i ^ + d y d r n j ^ + d z d r n k ^
d r n d x = d ( x 2 + y 2 + z 2 ) n 2 d x \frac{dr^{n}}{dx}=\frac{d(x^{2}+y^{2}+z^{2})^{\frac{n}{2}}}{dx} d x d r n = d x d ( x 2 + y 2 + z 2 ) 2 n
= n 2 ( x 2 + y 2 + z 2 ) n 2 − 1 d d x ( x 2 + y 2 + z 2 ) =\frac{n}{2}(x^{2}+y^{2}+z^{2})^{{\frac{n}{2}}-1}\frac{d}{dx}(x^{2}+y^{2}+z^{2}) = 2 n ( x 2 + y 2 + z 2 ) 2 n − 1 d x d ( x 2 + y 2 + z 2 )
= n 2 ( x 2 + y 2 + z 2 ) n 2 − 1 2 x =\frac{n}{2}(x^{2}+y^{2}+z^{2})^{{\frac{n}{2}}-1}2x = 2 n ( x 2 + y 2 + z 2 ) 2 n − 1 2 x
= n ( x 2 + y 2 + z 2 ) n 2 − 1 x =n(x^{2}+y^{2}+z^{2})^{{\frac{n}{2}-1}}x = n ( x 2 + y 2 + z 2 ) 2 n − 1 x
∣ ∣ y ||y ∣∣ y
d r n d y = d ( x 2 + y 2 + z 2 ) n 2 d y \frac{dr^{n}}{dy}=\frac{d(x^{2}+y^{2}+z^{2})^{\frac{n}{2}}}{dy} d y d r n = d y d ( x 2 + y 2 + z 2 ) 2 n
= n ( x 2 + y 2 + z 2 ) n 2 − 1 y =n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}y = n ( x 2 + y 2 + z 2 ) 2 n − 1 y
And;
d r n d z = d ( x 2 + y 2 + z 2 ) n 2 d z \frac{dr^{n}}{dz}=\frac{d(x^{2}+y^{2}+z^{2})^{\frac{n}{2}}}{dz} d z d r n = d z d ( x 2 + y 2 + z 2 ) 2 n
= n ( x 2 + y 2 + z 2 ) n 2 − 1 z =n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}z = n ( x 2 + y 2 + z 2 ) 2 n − 1 z
Hence;
▽ r n = n ( x 2 + y 2 + z 2 ) n 2 − 1 ( x i ^ + y j ^ + z k ^ ) ▽ r n = n ( x 2 + y 2 + z 2 ) n 2 − 1 r ⃗ \triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}(x\hat i+y\hat j+z\hat k)\newline \triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}\vec r ▽ r n = n ( x 2 + y 2 + z 2 ) 2 n − 1 ( x i ^ + y j ^ + z k ^ ) ▽ r n = n ( x 2 + y 2 + z 2 ) 2 n − 1 r
▽ r n = n ( x 2 + y 2 + z 2 ) n − 2 2 r ⃗ \triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\frac{n-2}{2}}\vec r ▽ r n = n ( x 2 + y 2 + z 2 ) 2 n − 2 r
Thus,
▽ r n = n r n − 2 r ⃗ \triangledown r^{n}=nr^{n-2}\vec r ▽ r n = n r n − 2 r
Comments