Question #224788

Show that ∇𝑟n = 𝑛𝑟n-2r\vec r


1
Expert's answer
2021-08-19T15:27:17-0400

rn=nrn2r\triangledown r^{n}=nr^{n-2}\vec r

r=xi^+yj^+zk^\vec r=x\hat i+y\hat j+z\hat k

rn=rn=x2+y2+z2n|\vec r|^{n}=r^{n}=\sqrt [n] {x^{2}+y^{2}+z^{2}}

=ddxi^+ddyj^+ddzk^\triangledown=\frac{d}{dx}\hat i+\frac{d}{dy}\hat j+\frac{d}{dz}\hat k

rn=drndxi^+drndyj^+drndzk^\triangledown r^{n}=\frac{dr^{n}}{dx}\hat i+\frac{dr^{n}}{dy}\hat j+\frac{dr^{n}}{dz}\hat k

drndx=d(x2+y2+z2)n2dx\frac{dr^{n}}{dx}=\frac{d(x^{2}+y^{2}+z^{2})^{\frac{n}{2}}}{dx}

=n2(x2+y2+z2)n21ddx(x2+y2+z2)=\frac{n}{2}(x^{2}+y^{2}+z^{2})^{{\frac{n}{2}}-1}\frac{d}{dx}(x^{2}+y^{2}+z^{2})

=n2(x2+y2+z2)n212x=\frac{n}{2}(x^{2}+y^{2}+z^{2})^{{\frac{n}{2}}-1}2x

=n(x2+y2+z2)n21x=n(x^{2}+y^{2}+z^{2})^{{\frac{n}{2}-1}}x

y||y

drndy=d(x2+y2+z2)n2dy\frac{dr^{n}}{dy}=\frac{d(x^{2}+y^{2}+z^{2})^{\frac{n}{2}}}{dy}

=n(x2+y2+z2)n21y=n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}y

And;

drndz=d(x2+y2+z2)n2dz\frac{dr^{n}}{dz}=\frac{d(x^{2}+y^{2}+z^{2})^{\frac{n}{2}}}{dz}

=n(x2+y2+z2)n21z=n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}z

Hence;

rn=n(x2+y2+z2)n21(xi^+yj^+zk^)rn=n(x2+y2+z2)n21r\triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}(x\hat i+y\hat j+z\hat k)\newline \triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\frac{n}{2}-1}\vec r

rn=n(x2+y2+z2)n22r\triangledown r^{n}=n(x^{2}+y^{2}+z^{2})^{\frac{n-2}{2}}\vec r

Thus,

rn=nrn2r\triangledown r^{n}=nr^{n-2}\vec r


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS