Question:
If π = ln"|\\vec r|"
, then show that βπ = "\\vec r" /π2
"\\overline{r}"(x,y,z)=(x,y,z);
| "\\overline{r}"(x,y,z)|= "\\sqrt{x^{2}+y^{2}+z^{2}}" ;
"\\phi"(x,y,z)= ln| "\\overline{r}"(x,y,z)|= 1/2"\\cdotp" ln(x2+y2+z2);
"\\nabla""\\phi"(x,y,z)=( d"\\phi"(x,y,z)/dx, d"\\phi"(x,y,z)/dy, d"\\phi"(x,y,z)/dz);
d(x,y,z)/dx=1/2"\\cdotp" dln(x2+y2+z2)/dx=1/2"\\cdotp" 2"\\cdotp" x/(x2+y2+z2)=x/"\\overline{r}"2;
d(x,y,z)/dy=1/2"\\cdotp" dln(x2+y2+z2)/dy=1/2"\\cdotp" 2"\\cdotp" y/(x2+y2+z2)=y/"\\overline{r}"2;
"\\nabla" "\\phi"(x,y,z)=(x/r2,y/r2,z/r2)=(x,y,z)/r2= "\\overline{r}"/"\\overline{r}"2;
Comments
Leave a comment