Answer to Question #224786 in Calculus for Unknown346307

Question #224786

Question:

If πœ‘ = ln∣rβƒ—βˆ£|\vec r|

, then show that βˆ‡πœ‘ = rβƒ—\vec r /π‘Ÿ2


1
Expert's answer
2021-08-12T17:16:47-0400


rβ€Ύ\overline{r}(x,y,z)=(x,y,z);

| rβ€Ύ\overline{r}(x,y,z)|= x2+y2+z2\sqrt{x^{2}+y^{2}+z^{2}} ;

Ο•\phi(x,y,z)= ln| rβ€Ύ\overline{r}(x,y,z)|= 1/2β‹…\cdotp ln(x2+y2+z2);

βˆ‡\nablaΟ•\phi(x,y,z)=( dΟ•\phi(x,y,z)/dx, dΟ•\phi(x,y,z)/dy, dΟ•\phi(x,y,z)/dz);

d(x,y,z)/dx=1/2β‹…\cdotp dln(x2+y2+z2)/dx=1/2β‹…\cdotp 2β‹…\cdotp x/(x2+y2+z2)=x/rβ€Ύ\overline{r}2;

d(x,y,z)/dy=1/2β‹…\cdotp dln(x2+y2+z2)/dy=1/2β‹…\cdotp 2β‹…\cdotp y/(x2+y2+z2)=y/rβ€Ύ\overline{r}2;

βˆ‡\nabla Ο•\phi(x,y,z)=(x/r2,y/r2,z/r2)=(x,y,z)/r2= rβ€Ύ\overline{r}/rβ€Ύ\overline{r}2;


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment