Question #224786

Question:

If 𝜑 = lnr|\vec r|

, then show that ∇𝜑 = r\vec r /𝑟2


1
Expert's answer
2021-08-12T17:16:47-0400


r\overline{r}(x,y,z)=(x,y,z);

| r\overline{r}(x,y,z)|= x2+y2+z2\sqrt{x^{2}+y^{2}+z^{2}} ;

ϕ\phi(x,y,z)= ln| r\overline{r}(x,y,z)|= 1/2\cdotp ln(x2+y2+z2);

\nablaϕ\phi(x,y,z)=( dϕ\phi(x,y,z)/dx, dϕ\phi(x,y,z)/dy, dϕ\phi(x,y,z)/dz);

d(x,y,z)/dx=1/2\cdotp dln(x2+y2+z2)/dx=1/2\cdotp 2\cdotp x/(x2+y2+z2)=x/r\overline{r}2;

d(x,y,z)/dy=1/2\cdotp dln(x2+y2+z2)/dy=1/2\cdotp 2\cdotp y/(x2+y2+z2)=y/r\overline{r}2;

\nabla ϕ\phi(x,y,z)=(x/r2,y/r2,z/r2)=(x,y,z)/r2= r\overline{r}/r\overline{r}2;


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS