Question #223134

Determine the monotony of the following sequences.

a) Un = 2n+3 / 5n-1 n € N

b) Un = √(n+3) - √(n+1) n € N*

c) Un = Σ from r=1 to n (1/ n+r) , n € N


1
Expert's answer
2021-09-29T00:44:29-0400

We have that a function is monotone increasing if its derivative is positive and and monotone decreasing if its derivative is negative. Therefore we find the derivativeof each of the given functionsFor the first function Un=2n+35n1, its derivative is235n2which is positive for all nN, hence the function is monotone increasingFor the second function Un=n+3n+1, its derivative is12n+312n+1which is negative for all nN, hence the function is monotone decreasingFor the third function Un=r=1n1n+r, to check for the monotonicity, we compute UnUn1=1n+112n+112n+2 =12n+212n+1=1(2n+2)(2n+1)<0Since UnUn1<0    Un<Un1, the fuction is monotone decreasing\text{We have that a function is monotone increasing if its derivative is positive and }\\ \text{and monotone decreasing if its derivative is negative. Therefore we find the derivative}\\ \text{of each of the given functions}\\ \text{For the first function $U_n= \frac{2n +3}{5n-1}$, its derivative is}\\ \qquad \qquad \qquad \qquad \qquad 2-\frac{3}{5n^2}\\ \text{which is positive for all $n \in \mathbb{N}$, hence the function is monotone increasing}\\ \text{For the second function $U_n = \sqrt{n+3}-\sqrt{n+1}$, its derivative is}\\ \qquad \qquad \qquad \qquad \qquad \frac{1}{2\sqrt{n+3}}-\frac{1}{2\sqrt{n+1}}\\ \text{which is negative for all $n \in \mathbb{N}$, hence the function is monotone decreasing}\\ \text{For the third function $U_n = \sum^n_{r=1}\frac{1}{n+r}$, to check for the monotonicity, we compute}\\\text{ $U_n-U_{n-1}= \frac{1}{n+1}-\frac{1}{2n+1}-\frac{1}{2n+2}$ }\\ =\frac{1}{2n+2}-\frac{1}{2n+1}\\ =\frac{-1}{(2n+2)(2n+1)}<0\\ \text{Since $U_n-U_{n-1}<0 \implies U_n < U_{n-1}$, the fuction is monotone decreasing}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS