5). ∫(1−cos(x)1−sin(x))exdx
Rewrite to get:
∫(cos(x)−1sin(x)−1)exdx
Rewriting using trigonometric identities:
∫(2csc2(2x)ex−cot(2x)ex)dx
Applying linearity we get:
21∫csc2(2x)exdx−∫cot(2x)exdx
Applying integration by parts for ∫cot(2x)exdx
Let u=cot(2x)⟹du=−2csc2(2x)exdx
Let dv=exdx⟹v=ex
∫udv=uv−∫vdu
=cot(2x)ex−∫−ex2csc2(2x)exdx
=cot(2x)ex+∫ex2csc2(2x)exdx
=cot(2x)ex+21∫csc2(2x)exdx
⟹∫cot(2x)exdx=cot(2x)ex+21∫csc2(2x)exdx
⟹21∫csc2(2x)exdx−∫cot(2x)exdx=21∫csc2(2x)exdx−[cot(2x)ex+21∫csc2(2x)exdx]
=21∫csc2(2x)exdx−cot(2x)ex−21∫csc2(2x)exdx
The integral 21∫csc2(2x)exdx cancels,hence we get
=−cot(2x)ex+C
∴∫(1−cos(x)1−sin(x))exdx=−cot(2x)ex+C
6). ∫04π2cos2(θ)cos(θ)+sin(θ)dθ
Rewrite to get:
=∫04π(2cos2(θ)cos(θ)+2cos2(θ)sin(θ))dθ
Applying linearity we get:
=21∫04πcos2(θ)cos(θ)dθ+21∫04πcos2(θ)sin(θ))dθ
=21∫04πcos(θ)1dθ+21∫04πcos2(θ)sin(θ))dθ
=21[∫04πcos(θ)1dθ+∫04πcos2(θ)sin(θ))dθ]
Applying integration by substitution for ∫04πcos2(θ)sin(θ))dθ we have
Let u=cos(θ)⟹du=−sin(θ)dθ
⟹∫04πcos2(θ)sin(θ))dθ=−∫04πu2du=−∫04πu−2du=[−u−1]04π=[−cos(θ)1]04π=−[cos(4π)1−cos(0)1]=cos(0)1−cos(4π)1
∴∫04πcos2(θ)sin(θ))dθ=cos(0)1−cos(4π)1=1−1.41421356237309=−0.41421356237309
Now, let's find ∫04πcos(θ)1dθ
cos(θ)1=sec(θ)
⟹∫04πcos(θ)1dθ=∫04πsec(θ)dθ
Expand fraction by (tan(θ)+sec(θ))
∫04πsec(θ)dθ=∫04πsec(θ)tan(θ)+sec(θ)tan(θ)+sec(θ)dθ
=∫04πtan(θ)+sec(θ)sec(θ)tan(θ)+sec2(θ)dθ
Applying integration by substitution for ∫04πtan(θ)+sec(θ)sec(θ)tan(θ)+sec2(θ)dθ
Let u=tan(θ)+sec(θ)⟹du=[sec(θ)tan(θ)+sec2(θ)]dθ
⟹dθ=sec(θ)tan(θ)+sec2(θ)du
⟹∫04πtan(θ)+sec(θ)sec(θ)tan(θ)+sec2(θ)dθ=∫04πusec(θ)tan(θ)+sec2(θ)sec(θ)tan(θ)+sec2(θ)du
The terms sec(θ)tan(θ)+sec2(θ) cancels hence we get
=∫04πudu=[ln(u)]04π=[ln(tan(θ)+sec(θ))]04π=[ln(tan(4π)+sec(4π))]−[ln(tan(0)+sec(0))]
tan(4π)=1
sec(4π)=cos(4π)1=1.41421356237309
tan(0)=0
sec(0)=cos(0)1=1
∫04πudu=[ln(1+1.41421356237309)]−[ln(0+1)]
=[ln(2.41421356237309)]−[ln(1)]=0.88137358701954
⟹∫04π2cos2(θ)cos(θ)+sin(θ)dθ=21[0.88137358701954−0.41421356237309]=0.23358001232323
Comments
Leave a comment