5) ʃ (1-sinx /1-cosx)ex dx
6) ʃ0π/4 cosθ +isinθ / 2cos2θ dθ
5). "\\int ({1-sin(x)\\over1-cos(x)})e^xdx"
Rewrite to get:
"\\int ({sin(x)-1\\over cos(x)-1})e^xdx"
Rewriting using trigonometric identities:
"\\int ({csc^2({x\\over 2})e^x\\over 2}-cot({x\\over 2})e^x)dx"
Applying linearity we get:
"{1\\over 2}\\int csc^2({x\\over 2})e^xdx-\\int cot({x\\over 2})e^xdx"
Applying integration by parts for "\\int cot({x\\over 2})e^xdx"
Let "u=cot({x\\over 2}) \\implies du=-{csc^2({x\\over 2})e^x\\over 2}dx"
Let "dv=e^xdx \\implies v=e^x"
"\\int udv=uv-\\int vdu"
"=cot({x\\over 2})e^x-\\int -e^x{csc^2({x\\over 2})e^x\\over 2}dx"
"=cot({x\\over 2})e^x+\\int e^x{csc^2({x\\over 2})e^x\\over 2}dx"
"=cot({x\\over 2})e^x+{1\\over 2}\\int csc^2({x\\over 2})e^xdx"
"\\implies \\int cot({x\\over 2})e^xdx=cot({x\\over 2})e^x+{1\\over 2}\\int csc^2({x\\over 2})e^xdx"
"\\implies {1\\over 2}\\int csc^2({x\\over 2})e^xdx-\\int cot({x\\over 2})e^xdx={1\\over 2}\\int csc^2({x\\over 2})e^xdx-[cot({x\\over 2})e^x+{1\\over 2}\\int csc^2({x\\over 2})e^xdx]"
"={1\\over 2}\\int csc^2({x\\over 2})e^xdx-cot({x\\over 2})e^x-{1\\over 2}\\int csc^2({x\\over 2})e^xdx"
The integral "{1\\over 2}\\int csc^2({x\\over 2})e^xdx" cancels,hence we get
"=-cot({x\\over 2})e^x+C"
"\\therefore \\int ({1-sin(x)\\over1-cos(x)})e^xdx=-cot({x\\over 2})e^x+C"
6). "\\int_0^{\\pi\\over 4} {cos(\\theta)+sin(\\theta)\\over 2cos^2(\\theta)}d\\theta"
Rewrite to get:
"=\\int_0^{\\pi\\over 4} ({cos(\\theta)\\over 2cos^2(\\theta)}+{sin(\\theta)\\over 2cos^2(\\theta)})d\\theta"
Applying linearity we get:
"={1\\over 2}\\int_0^{\\pi\\over 4}{cos(\\theta)\\over cos^2(\\theta)}d\\theta+{1\\over 2}\\int_0^{\\pi\\over 4}{sin(\\theta)\\over cos^2(\\theta)})d\\theta"
"={1\\over 2}\\int_0^{\\pi\\over 4}{1\\over cos(\\theta)}d\\theta+{1\\over 2}\\int_0^{\\pi\\over 4}{sin(\\theta)\\over cos^2(\\theta)})d\\theta"
"={1\\over 2}[\\int_0^{\\pi\\over 4}{1\\over cos(\\theta)}d\\theta+\\int_0^{\\pi\\over 4}{sin(\\theta)\\over cos^2(\\theta)})d\\theta]"
Applying integration by substitution for "\\int_0^{\\pi\\over 4}{sin(\\theta)\\over cos^2(\\theta)})d\\theta" we have
Let "u=cos(\\theta) \\implies du=-sin(\\theta)d\\theta"
"\\implies \\int_0^{\\pi\\over 4}{sin(\\theta)\\over cos^2(\\theta)})d\\theta=-\\int_0^{\\pi\\over 4}{du\\over u^2}=-\\int_0^{\\pi\\over 4}u^{-2}du=[-u^{-1}]_0^{\\pi\\over 4}=[-{1\\over cos(\\theta)}]_0^{\\pi\\over 4}=-[{1\\over cos({\\pi\\over 4})}-{1\\over cos(0)}]={1\\over cos(0)}-{1\\over cos({\\pi\\over 4})}"
"\\therefore \\int_0^{\\pi\\over 4}{sin(\\theta)\\over cos^2(\\theta)})d\\theta={1\\over cos(0)}-{1\\over cos({\\pi\\over 4})}=1-1.41421356237309=-0.41421356237309"
Now, let's find "\\int_0^{\\pi\\over 4}{1\\over cos(\\theta)}d\\theta"
"{1\\over cos(\\theta)}=sec(\\theta)"
"\\implies \\int_0^{\\pi\\over 4}{1\\over cos(\\theta)}d\\theta= \\int_0^{\\pi\\over 4}sec(\\theta)d\\theta"
Expand fraction by "(tan(\\theta)+sec(\\theta))"
"\\int_0^{\\pi\\over 4}sec(\\theta)d\\theta= \\int_0^{\\pi\\over 4}sec(\\theta){tan(\\theta)+sec(\\theta)\\over tan(\\theta)+sec(\\theta)}d\\theta"
"= \\int_0^{\\pi\\over 4}{sec(\\theta)tan(\\theta)+sec^2(\\theta)\\over tan(\\theta)+sec(\\theta)}d\\theta"
Applying integration by substitution for "\\int_0^{\\pi\\over 4}{sec(\\theta)tan(\\theta)+sec^2(\\theta)\\over tan(\\theta)+sec(\\theta)}d\\theta"
Let "u=tan(\\theta)+sec(\\theta) \\implies du=[sec(\\theta)tan(\\theta)+sec^2(\\theta)]d\\theta"
"\\implies d\\theta ={du\\over sec(\\theta)tan(\\theta)+sec^2(\\theta)}"
"\\implies\\int_0^{\\pi\\over 4}{sec(\\theta)tan(\\theta)+sec^2(\\theta)\\over tan(\\theta)+sec(\\theta)}d\\theta=\\int_0^{\\pi\\over 4}{sec(\\theta)tan(\\theta)+sec^2(\\theta)\\over u}{du\\over sec(\\theta)tan(\\theta)+sec^2(\\theta)}"
The terms "sec(\\theta)tan(\\theta)+sec^2(\\theta)" cancels hence we get
"=\\int_0^{\\pi\\over 4}{du\\over u}=[ln(u)]_0^{\\pi\\over 4}=[ln(tan(\\theta)+sec(\\theta))]_0^{\\pi\\over 4}=[ln(tan({\\pi\\over 4})+sec({\\pi\\over 4}))]-[ln(tan(0)+sec(0))]"
"tan({\\pi\\over 4})=1"
"sec({\\pi\\over 4})={1\\over cos({\\pi\\over 4})}=1.41421356237309"
"tan(0)=0"
"sec(0)={1\\over cos(0)}=1"
"\\int_0^{\\pi\\over 4}{du\\over u}=[ln(1+1.41421356237309)]-[ln(0+1)]"
"=[ln(2.41421356237309)]-[ln(1)]=0.88137358701954"
"\\implies \\int_0^{\\pi\\over 4} {cos(\\theta)+sin(\\theta)\\over 2cos^2(\\theta)}d\\theta={1\\over 2}[0.88137358701954-0.41421356237309]=0.23358001232323"
Comments
Leave a comment