Answer to Question #223112 in Calculus for Kalery

Question #223112

5) ʃ (1-sinx /1-cosx)ex dx

6) ʃ0π/4 cosθ +isinθ / 2cos2θ dθ


1
Expert's answer
2021-09-14T06:09:38-0400

5). (1sin(x)1cos(x))exdx\int ({1-sin(x)\over1-cos(x)})e^xdx

Rewrite to get:

(sin(x)1cos(x)1)exdx\int ({sin(x)-1\over cos(x)-1})e^xdx

Rewriting using trigonometric identities:

(csc2(x2)ex2cot(x2)ex)dx\int ({csc^2({x\over 2})e^x\over 2}-cot({x\over 2})e^x)dx

Applying linearity we get:

12csc2(x2)exdxcot(x2)exdx{1\over 2}\int csc^2({x\over 2})e^xdx-\int cot({x\over 2})e^xdx

Applying integration by parts for cot(x2)exdx\int cot({x\over 2})e^xdx

Let u=cot(x2)    du=csc2(x2)ex2dxu=cot({x\over 2}) \implies du=-{csc^2({x\over 2})e^x\over 2}dx

Let dv=exdx    v=exdv=e^xdx \implies v=e^x

udv=uvvdu\int udv=uv-\int vdu

=cot(x2)exexcsc2(x2)ex2dx=cot({x\over 2})e^x-\int -e^x{csc^2({x\over 2})e^x\over 2}dx

=cot(x2)ex+excsc2(x2)ex2dx=cot({x\over 2})e^x+\int e^x{csc^2({x\over 2})e^x\over 2}dx

=cot(x2)ex+12csc2(x2)exdx=cot({x\over 2})e^x+{1\over 2}\int csc^2({x\over 2})e^xdx

    cot(x2)exdx=cot(x2)ex+12csc2(x2)exdx\implies \int cot({x\over 2})e^xdx=cot({x\over 2})e^x+{1\over 2}\int csc^2({x\over 2})e^xdx

    12csc2(x2)exdxcot(x2)exdx=12csc2(x2)exdx[cot(x2)ex+12csc2(x2)exdx]\implies {1\over 2}\int csc^2({x\over 2})e^xdx-\int cot({x\over 2})e^xdx={1\over 2}\int csc^2({x\over 2})e^xdx-[cot({x\over 2})e^x+{1\over 2}\int csc^2({x\over 2})e^xdx]

=12csc2(x2)exdxcot(x2)ex12csc2(x2)exdx={1\over 2}\int csc^2({x\over 2})e^xdx-cot({x\over 2})e^x-{1\over 2}\int csc^2({x\over 2})e^xdx

The integral 12csc2(x2)exdx{1\over 2}\int csc^2({x\over 2})e^xdx cancels,hence we get

=cot(x2)ex+C=-cot({x\over 2})e^x+C

(1sin(x)1cos(x))exdx=cot(x2)ex+C\therefore \int ({1-sin(x)\over1-cos(x)})e^xdx=-cot({x\over 2})e^x+C


6). 0π4cos(θ)+sin(θ)2cos2(θ)dθ\int_0^{\pi\over 4} {cos(\theta)+sin(\theta)\over 2cos^2(\theta)}d\theta

Rewrite to get:

=0π4(cos(θ)2cos2(θ)+sin(θ)2cos2(θ))dθ=\int_0^{\pi\over 4} ({cos(\theta)\over 2cos^2(\theta)}+{sin(\theta)\over 2cos^2(\theta)})d\theta

Applying linearity we get:

=120π4cos(θ)cos2(θ)dθ+120π4sin(θ)cos2(θ))dθ={1\over 2}\int_0^{\pi\over 4}{cos(\theta)\over cos^2(\theta)}d\theta+{1\over 2}\int_0^{\pi\over 4}{sin(\theta)\over cos^2(\theta)})d\theta

=120π41cos(θ)dθ+120π4sin(θ)cos2(θ))dθ={1\over 2}\int_0^{\pi\over 4}{1\over cos(\theta)}d\theta+{1\over 2}\int_0^{\pi\over 4}{sin(\theta)\over cos^2(\theta)})d\theta

=12[0π41cos(θ)dθ+0π4sin(θ)cos2(θ))dθ]={1\over 2}[\int_0^{\pi\over 4}{1\over cos(\theta)}d\theta+\int_0^{\pi\over 4}{sin(\theta)\over cos^2(\theta)})d\theta]

Applying integration by substitution for 0π4sin(θ)cos2(θ))dθ\int_0^{\pi\over 4}{sin(\theta)\over cos^2(\theta)})d\theta we have

Let u=cos(θ)    du=sin(θ)dθu=cos(\theta) \implies du=-sin(\theta)d\theta

    0π4sin(θ)cos2(θ))dθ=0π4duu2=0π4u2du=[u1]0π4=[1cos(θ)]0π4=[1cos(π4)1cos(0)]=1cos(0)1cos(π4)\implies \int_0^{\pi\over 4}{sin(\theta)\over cos^2(\theta)})d\theta=-\int_0^{\pi\over 4}{du\over u^2}=-\int_0^{\pi\over 4}u^{-2}du=[-u^{-1}]_0^{\pi\over 4}=[-{1\over cos(\theta)}]_0^{\pi\over 4}=-[{1\over cos({\pi\over 4})}-{1\over cos(0)}]={1\over cos(0)}-{1\over cos({\pi\over 4})}

0π4sin(θ)cos2(θ))dθ=1cos(0)1cos(π4)=11.41421356237309=0.41421356237309\therefore \int_0^{\pi\over 4}{sin(\theta)\over cos^2(\theta)})d\theta={1\over cos(0)}-{1\over cos({\pi\over 4})}=1-1.41421356237309=-0.41421356237309

Now, let's find 0π41cos(θ)dθ\int_0^{\pi\over 4}{1\over cos(\theta)}d\theta

1cos(θ)=sec(θ){1\over cos(\theta)}=sec(\theta)

    0π41cos(θ)dθ=0π4sec(θ)dθ\implies \int_0^{\pi\over 4}{1\over cos(\theta)}d\theta= \int_0^{\pi\over 4}sec(\theta)d\theta

Expand fraction by (tan(θ)+sec(θ))(tan(\theta)+sec(\theta))

0π4sec(θ)dθ=0π4sec(θ)tan(θ)+sec(θ)tan(θ)+sec(θ)dθ\int_0^{\pi\over 4}sec(\theta)d\theta= \int_0^{\pi\over 4}sec(\theta){tan(\theta)+sec(\theta)\over tan(\theta)+sec(\theta)}d\theta

=0π4sec(θ)tan(θ)+sec2(θ)tan(θ)+sec(θ)dθ= \int_0^{\pi\over 4}{sec(\theta)tan(\theta)+sec^2(\theta)\over tan(\theta)+sec(\theta)}d\theta

Applying integration by substitution for 0π4sec(θ)tan(θ)+sec2(θ)tan(θ)+sec(θ)dθ\int_0^{\pi\over 4}{sec(\theta)tan(\theta)+sec^2(\theta)\over tan(\theta)+sec(\theta)}d\theta

Let u=tan(θ)+sec(θ)    du=[sec(θ)tan(θ)+sec2(θ)]dθu=tan(\theta)+sec(\theta) \implies du=[sec(\theta)tan(\theta)+sec^2(\theta)]d\theta

    dθ=dusec(θ)tan(θ)+sec2(θ)\implies d\theta ={du\over sec(\theta)tan(\theta)+sec^2(\theta)}

    0π4sec(θ)tan(θ)+sec2(θ)tan(θ)+sec(θ)dθ=0π4sec(θ)tan(θ)+sec2(θ)udusec(θ)tan(θ)+sec2(θ)\implies\int_0^{\pi\over 4}{sec(\theta)tan(\theta)+sec^2(\theta)\over tan(\theta)+sec(\theta)}d\theta=\int_0^{\pi\over 4}{sec(\theta)tan(\theta)+sec^2(\theta)\over u}{du\over sec(\theta)tan(\theta)+sec^2(\theta)}

The terms sec(θ)tan(θ)+sec2(θ)sec(\theta)tan(\theta)+sec^2(\theta) cancels hence we get

=0π4duu=[ln(u)]0π4=[ln(tan(θ)+sec(θ))]0π4=[ln(tan(π4)+sec(π4))][ln(tan(0)+sec(0))]=\int_0^{\pi\over 4}{du\over u}=[ln(u)]_0^{\pi\over 4}=[ln(tan(\theta)+sec(\theta))]_0^{\pi\over 4}=[ln(tan({\pi\over 4})+sec({\pi\over 4}))]-[ln(tan(0)+sec(0))]

tan(π4)=1tan({\pi\over 4})=1

sec(π4)=1cos(π4)=1.41421356237309sec({\pi\over 4})={1\over cos({\pi\over 4})}=1.41421356237309

tan(0)=0tan(0)=0

sec(0)=1cos(0)=1sec(0)={1\over cos(0)}=1

0π4duu=[ln(1+1.41421356237309)][ln(0+1)]\int_0^{\pi\over 4}{du\over u}=[ln(1+1.41421356237309)]-[ln(0+1)]

=[ln(2.41421356237309)][ln(1)]=0.88137358701954=[ln(2.41421356237309)]-[ln(1)]=0.88137358701954

    0π4cos(θ)+sin(θ)2cos2(θ)dθ=12[0.881373587019540.41421356237309]=0.23358001232323\implies \int_0^{\pi\over 4} {cos(\theta)+sin(\theta)\over 2cos^2(\theta)}d\theta={1\over 2}[0.88137358701954-0.41421356237309]=0.23358001232323


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment