3)
∫ − 1 1 ( x + 1 2 ) ( x 2 + x + 1 ) d x \int_{-1}^1 (x +\frac{1}{2}) \sqrt{(x^2+x+1)}dx ∫ − 1 1 ( x + 2 1 ) ( x 2 + x + 1 ) d x
Solution
∫ ( x + 1 2 ) ( x 2 + x + 1 ) d x \int (x +\frac{1}{2}) \sqrt{(x^2+x+1)}dx ∫ ( x + 2 1 ) ( x 2 + x + 1 ) d x
Substitute. u = x 2 + x + 1 u=x^2+x+1 u = x 2 + x + 1
d u d x = 2 x + 1 → d x = 1 2 x + 1 d u : \frac{du}{dx}=2x+1 \to dx=\frac{1}{2x+1}du: d x d u = 2 x + 1 → d x = 2 x + 1 1 d u :
= 1 2 ∫ u d u =\frac{1}{2} \int \sqrt{u}du = 2 1 ∫ u d u
Now solving:
= ∫ u d u =\int \sqrt{u}du = ∫ u d u
Apply power rule
= ∫ u n d u = u n + 1 n + 1 =\int u^ndu=\frac{u^{n+1}}{n+1} = ∫ u n d u = n + 1 u n + 1 with n = 1 2 n=\frac{1}{2} n = 2 1
= 2 u 3 2 3 =\frac{2u^{\frac{3}{2}}}{3} = 3 2 u 2 3
Plug in solved integrals
= 1 2 ∫ u d u =\frac{1}{2} \int \sqrt{u}du = 2 1 ∫ u d u
= u 3 2 3 =\frac{u^{\frac{3}{2}}}{3} = 3 u 2 3
Undo substitution u = x 2 + x + 1 : u=x^2+x+1: u = x 2 + x + 1 :
= ( x 2 + x + 1 ) 3 2 3 + C =\frac{(x^2+x+1)^{\frac{3}{2}}}{3}+C = 3 ( x 2 + x + 1 ) 2 3 + C
Inserting the bounds
= [ ( 1 2 + 1 + 1 ) 3 2 3 + C ] − [ ( ( − 1 ) 2 + ( − 1 ) + 1 ) 3 2 3 + C ] =[\frac{(1^2+1+1)^{\frac{3}{2}}}{3}+C]
-[\frac{((-1)^2+(-1)+1)^{\frac{3}{2}}}{3}+C] = [ 3 ( 1 2 + 1 + 1 ) 2 3 + C ] − [ 3 (( − 1 ) 2 + ( − 1 ) + 1 ) 2 3 + C ]
3 − 1 3 = 1.398717474235544 \sqrt{3}-\frac{1}{3}=1.398717474235544 3 − 3 1 = 1.398717474235544
4)
∫ ( x + 2 ) ( x + 3 ) d x \smallint
\frac{(x+2) }{\sqrt{(x+3)}} dx ∫ ( x + 3 ) ( x + 2 ) d x
Solution
∫ x + 2 x + 3 d x \smallint
\frac{x+2}{\sqrt{x+3}} dx ∫ x + 3 x + 2 d x
Substitute u = x + 3 u=x+3 u = x + 3
d u d x = 1 → d x = d u \frac{du}{dx}=1 \to dx=du d x d u = 1 → d x = d u
= ∫ u − 1 u d u =\smallint\frac{u-1}{\sqrt{u}}du = ∫ u u − 1 d u
Expand
= ∫ [ u − 1 u ] d u =\smallint[{\sqrt{u}}-\frac{1}{\sqrt{u}}]du = ∫ [ u − u 1 ] d u
Apply linearity
= ∫ u d u − ∫ 1 u d u =\smallint{\sqrt{u}}du
-
\smallint
\frac{1}{\sqrt{u}}du = ∫ u d u − ∫ u 1 d u
Now solving
= ∫ u d u =\smallint \sqrt{u} du = ∫ u d u
Apply power rule:
= ∫ u n d u = u n + 1 n + 1 =\int u^ndu=\frac{u^{n+1}}{n+1} = ∫ u n d u = n + 1 u n + 1 with n = 1 2 n=\frac{1}{2} n = 2 1
= 2 u 3 2 3 =\frac{2u^{\frac{3}{2}}}{3} = 3 2 u 2 3
Now solving
∫ 1 u d u \int\frac{1}{\sqrt{u}}du ∫ u 1 d u
Apply power rule with n = − 1 2 : n=-\frac{1}{2}: n = − 2 1 :
= 2 u =2\sqrt{u} = 2 u
Plug in solved integrals
= ∫ u d u − ∫ 1 u d u =\smallint{\sqrt{u}}du
-
\smallint
\frac{1}{\sqrt{u}}du = ∫ u d u − ∫ u 1 d u
= 2 u 3 2 3 − 2 u =\frac{2u^{\frac{3}{2}}}{3}-2\sqrt{u} = 3 2 u 2 3 − 2 u
Undo substitution u = x + 3 : u=x+3: u = x + 3 :
= 2 ( x + 3 ) 3 2 3 − 2 x + 3 =\frac{2(x+3)^{\frac{3}{2}}}{3}-2\sqrt{x+3} = 3 2 ( x + 3 ) 2 3 − 2 x + 3
= 2 ( x + 3 ) 3 2 3 − 2 x + 3 + C =\frac{2(x+3)^{\frac{3}{2}}}{3}-2\sqrt{x+3} +C = 3 2 ( x + 3 ) 2 3 − 2 x + 3 + C
= 2 [ 2 ( x + 3 ) 3 2 3 − x + 3 ] + C =2[\frac{2(x+3)^{\frac{3}{2}}}{3}-\sqrt{x+3} ]+C = 2 [ 3 2 ( x + 3 ) 2 3 − x + 3 ] + C
= 2 x ( x + 3 ) 3 + C =\frac{2x(x+3)^{}}{3}+C = 3 2 x ( x + 3 ) + C
Comments