Evaluate the following Integrals
3) ʃ-11 (x + 1/2) √(x2+x+1)dx
4) ʃ (x+2) / √(x+3) dx
3)
"\\int_{-1}^1 (x +\\frac{1}{2}) \\sqrt{(x^2+x+1)}dx"
Solution
"\\int (x +\\frac{1}{2}) \\sqrt{(x^2+x+1)}dx"
Substitute. "u=x^2+x+1"
"\\frac{du}{dx}=2x+1 \\to dx=\\frac{1}{2x+1}du:"
"=\\frac{1}{2} \\int \\sqrt{u}du"
Now solving:
"=\\int \\sqrt{u}du"
Apply power rule
"=\\int u^ndu=\\frac{u^{n+1}}{n+1}" with "n=\\frac{1}{2}"
"=\\frac{2u^{\\frac{3}{2}}}{3}"
Plug in solved integrals
"=\\frac{1}{2} \\int \\sqrt{u}du"
"=\\frac{u^{\\frac{3}{2}}}{3}"
Undo substitution "u=x^2+x+1:"
"=\\frac{(x^2+x+1)^{\\frac{3}{2}}}{3}+C"
Inserting the bounds
"=[\\frac{(1^2+1+1)^{\\frac{3}{2}}}{3}+C]\n-[\\frac{((-1)^2+(-1)+1)^{\\frac{3}{2}}}{3}+C]"
"\\sqrt{3}-\\frac{1}{3}=1.398717474235544"
4)
"\\smallint\n\\frac{(x+2) }{\\sqrt{(x+3)}} dx"
Solution
"\\smallint\n\\frac{x+2}{\\sqrt{x+3}} dx"
Substitute "u=x+3"
"\\frac{du}{dx}=1 \\to dx=du"
"=\\smallint\\frac{u-1}{\\sqrt{u}}du"
Expand
"=\\smallint[{\\sqrt{u}}-\\frac{1}{\\sqrt{u}}]du"
Apply linearity
"=\\smallint{\\sqrt{u}}du\n-\n\\smallint\n\\frac{1}{\\sqrt{u}}du"
Now solving
"=\\smallint \\sqrt{u} du"
Apply power rule:
"=\\int u^ndu=\\frac{u^{n+1}}{n+1}" with "n=\\frac{1}{2}"
"=\\frac{2u^{\\frac{3}{2}}}{3}"
Now solving
"\\int\\frac{1}{\\sqrt{u}}du"
Apply power rule with "n=-\\frac{1}{2}:"
"=2\\sqrt{u}"
Plug in solved integrals
"=\\smallint{\\sqrt{u}}du\n-\n\\smallint\n\\frac{1}{\\sqrt{u}}du"
"=\\frac{2u^{\\frac{3}{2}}}{3}-2\\sqrt{u}"
Undo substitution "u=x+3:"
"=\\frac{2(x+3)^{\\frac{3}{2}}}{3}-2\\sqrt{x+3}"
"=\\frac{2(x+3)^{\\frac{3}{2}}}{3}-2\\sqrt{x+3} +C"
"=2[\\frac{2(x+3)^{\\frac{3}{2}}}{3}-\\sqrt{x+3} ]+C"
"=\\frac{2x(x+3)^{}}{3}+C"
Comments
Leave a comment