Evaluate the limit as x turns to 1-
Lim [sin(x2-1) / e(Inx) - 1]
"\\frac{sin(x^2-1)}{e^{lnx}-1}=\\frac{sin(x^2-1)}{x-1}"
using L'hopital's rule:
"(sin(x^2-1))'=2xcos(x^2-1)"
"(x-1)'=1"
"\\displaystyle \\lim_{x\\to 1^-}\\frac{sin(x^2-1)}{x-1}=\\displaystyle \\lim_{x\\to 1^-}2xcos(x^2-1)=2"
Comments
Leave a comment