Solve the inequality
x>√(x+2)
IxI / Ix+1I -1 > 1
1.
We know that
"\\begin{matrix}\n x+2\\geq0 \\\\ \\\\\n \\sqrt{x+2}\\geq0\n\\end{matrix}"Then we have "x>0"
"x^2-x-2>0"
"(x+1)(x-2)>0"
"x<-1\\ or \\ x>2"
Since "x>0," then we take "x>2."
Answer: "x>2."
"x\\in(2, \\infin)."
2.
"|x+1|-1\\not=0=>x\\not=0, x\\not=1"
"\\begin{cases}\n |x+1|>1 \\\\\n |x|+1>|x+1|\n\\end{cases}"
"x\\leq-1, x\\not=-2"
"\\begin{cases}\n -x-1>1 \\\\\n -x+1>-x-1\n\\end{cases}"
"\\begin{cases}\nx<-2 \\\\\n 2>0\n\\end{cases}"
"x\\in(-\\infin, -2)"
"-1\\leq x<0"
"\\begin{cases}\n x+1>1 \\\\\n -x+1>x+1\n\\end{cases}""\\begin{cases}\nx>0 \\\\\n 2x<0\n\\end{cases}"
No solution
"x>0"
"\\begin{cases}\n x+1>1 \\\\\n x+1>x+1\n\\end{cases}""\\begin{cases}\nx>0 \\\\\n 1>1\n\\end{cases}"
No solution
Answer: "x<-2"
"x\\in(-\\infin, -2)"
Comments
Leave a comment