Solution.
V x = π ∫ a b f 2 ( x ) d x V_x=\pi \int_a^b f^2(x)dx V x = π ∫ a b f 2 ( x ) d x So, we will have
V x = V 1 + V 2 = π ∫ 0 2 x 2 d x + π ∫ 2 4 ( 4 − ( x − 2 ) 2 ) 2 d x V_x=V_1+V_2=\pi \int_0^2 x^2dx+\pi\int_2^4 (\sqrt{4-(x-2)^2})^2dx V x = V 1 + V 2 = π ∫ 0 2 x 2 d x + π ∫ 2 4 ( 4 − ( x − 2 ) 2 ) 2 d x ∫ 0 2 x 2 d x = x 3 3 ∣ 0 2 = 8 3 \int_0^2 x^2dx=\frac{x^3}{3}|_0^2=\frac{8}{3} ∫ 0 2 x 2 d x = 3 x 3 ∣ 0 2 = 3 8
∫ 2 4 ( 4 − x 2 + 4 x − 4 ) d x = ∫ 2 4 ( − x 2 + 4 x ) d x = ( − x 3 3 + 4 x 2 2 ) ∣ 2 4 = − 64 3 + 2 ⋅ 16 + 8 3 − 2 ⋅ 4 = − 56 3 + 24 \int_2^4 (4-x^2+4x-4)dx=\int_2^4 (-x^2+4x)dx=\newline
(-\frac{x^3}{3}+4\frac{x^2}{2})|_2^4=-\frac{64}{3}+2\cdot 16+\frac{8}{3}-2\cdot 4=\newline
-\frac{56}{3}+24 ∫ 2 4 ( 4 − x 2 + 4 x − 4 ) d x = ∫ 2 4 ( − x 2 + 4 x ) d x = ( − 3 x 3 + 4 2 x 2 ) ∣ 2 4 = − 3 64 + 2 ⋅ 16 + 3 8 − 2 ⋅ 4 = − 3 56 + 24
From here
V x = ( 8 3 − 56 3 + 24 ) π = ( 24 − 48 3 ) π = ( 24 − 16 ) π = 8 π V_x=(\frac{8}{3}-\frac{56}{3}+24)\pi=(24-\frac{48}{3})\pi=(24-16)\pi=8\pi V x = ( 3 8 − 3 56 + 24 ) π = ( 24 − 3 48 ) π = ( 24 − 16 ) π = 8 π sq.units.
Answer. 8 π 8\pi 8 π sq.units.
Comments