Calculate the volume created by revolution around the axes OX, of D of the plane (OXY) where D={(x,y) ∈R: 0 ≤ y ≤x, (x-2)2 +y2 ≤ 4}
Solution.
So, we will have
"\\int_0^2 x^2dx=\\frac{x^3}{3}|_0^2=\\frac{8}{3}"
"\\int_2^4 (4-x^2+4x-4)dx=\\int_2^4 (-x^2+4x)dx=\\newline\n(-\\frac{x^3}{3}+4\\frac{x^2}{2})|_2^4=-\\frac{64}{3}+2\\cdot 16+\\frac{8}{3}-2\\cdot 4=\\newline\n-\\frac{56}{3}+24"
From here
"V_x=(\\frac{8}{3}-\\frac{56}{3}+24)\\pi=(24-\\frac{48}{3})\\pi=(24-16)\\pi=8\\pi" sq.units.
Answer. "8\\pi" sq.units.
Comments
Leave a comment