Consider the integral:
I= ∫ 5dx / 4 sin x + 3 cos x
(a) Use z - substitution to show that :
I = ∫ -10dz / (3z + 1)(z-3) where z = tan(x/2)
(b) Now use the method of partial fractions to determine the integral.
a)z−substitutiontan(x2)=zdx=21+z2dzsin x=2z1+z2cos x=1−z21+z2I=∫5dx4sin x+3cos xdx=∫5(21+z2)4(2z1+z2)+3(1−z21+z2)dx=∫101+z28z1+z2+3−3z21+z2dz=∫101+z28z+3−3z21+z2dz=∫108z+3−3z2dz=∫10(3z+1)(−z+3)dz=∫−10(3z+1)(z−3)dz.b)∫−10(3z+1)(z−3)dz=−[∫A3z+1dz+∫Bz−3dz]10(3z+1)(z−3)=A3z+1+Bz−3multiply through by (3z+1)(z−3)10=A(z−3)+B(3z+1)putting z=310=B(3∗3+1)10=10BB=1putting z=010=−3A+B10=−3A+19=−3AA=−3the integral becomes:−[∫−33z+1dz+∫1z−3dz]=3ln∣3z+1∣3−ln∣z−3∣+C=ln∣3z+1∣−ln∣z−3∣+C=ln∣3z+1z−3∣+Ca)z-substitution\newline tan (\frac{x}{2})=z\newline dx=\frac{2}{1+z^{2}}dz\newline sin\ x=\frac{2z}{1+z^{2}}\newline cos\ x=\frac{1-z^{2}}{1+z^{2}}\newline I=\int \frac{5dx}{4sin\ x+3cos\ x}dx=\int \frac{5(\frac{2}{1+z^{2}})}{4(\frac{2z}{1+z^{2}})+3(\frac{1-z^{2}}{1+z^{2}})}dx\newline =\int \frac{\frac{10}{1+z^{2}}}{\frac{8z}{1+z^{2}}+\frac{3-3z^{2}}{1+z^{2}}}dz=\int \frac{\frac{10}{1+z^{2}}}{\frac{8z+3-3z^{2}}{1+z^{2}}}dz\newline =\int \frac{10}{8z+3-3z^{2}}dz=\int \frac{10}{(3z+1)(-z+3)}dz\newline =\int \frac{-10}{(3z+1)(z-3)}dz.\newline b)\newline \int \frac{-10}{(3z+1)(z-3)}dz=-[\int \frac{A}{3z+1}dz+\int \frac{B}{z-3}dz]\newline \frac{10}{(3z+1)(z-3)}=\frac{A}{3z+1}+\frac{B}{z-3}\newline multiply\ through\ by\ (3z+1)(z-3)\newline 10=A(z-3)+B(3z+1)\newline putting\ z=3\newline 10=B(3*3+1)\newline 10=10B\newline B=1\newline putting\ z=0\newline 10=-3A+B\newline 10=-3A+1\newline 9=-3A\newline A=-3\newline the\ integral\ becomes:\newline -[\int \frac{-3}{3z+1}dz+\int \frac{1}{z-3}dz]\newline = 3\frac{ln|3z+1|}{3}-ln|z-3|+C\newline =ln|3z+1|-ln|z-3|+C\newline =ln|\frac{3z+1}{z-3}|+Ca)z−substitutiontan(2x)=zdx=1+z22dzsin x=1+z22zcos x=1+z21−z2I=∫4sin x+3cos x5dxdx=∫4(1+z22z)+3(1+z21−z2)5(1+z22)dx=∫1+z28z+1+z23−3z21+z210dz=∫1+z28z+3−3z21+z210dz=∫8z+3−3z210dz=∫(3z+1)(−z+3)10dz=∫(3z+1)(z−3)−10dz.b)∫(3z+1)(z−3)−10dz=−[∫3z+1Adz+∫z−3Bdz](3z+1)(z−3)10=3z+1A+z−3Bmultiply through by (3z+1)(z−3)10=A(z−3)+B(3z+1)putting z=310=B(3∗3+1)10=10BB=1putting z=010=−3A+B10=−3A+19=−3AA=−3the integral becomes:−[∫3z+1−3dz+∫z−31dz]=33ln∣3z+1∣−ln∣z−3∣+C=ln∣3z+1∣−ln∣z−3∣+C=ln∣z−33z+1∣+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments