Consider the integral:
I= ∫ 5dx / 4 sin x + 3 cos x
(a) Use z - substitution to show that :
I = ∫ -10dz / (3z + 1)(z-3) where z = tan(x/2)
(b) Now use the method of partial fractions to determine the integral.
"a)z-substitution\\newline tan (\\frac{x}{2})=z\\newline dx=\\frac{2}{1+z^{2}}dz\\newline sin\\ x=\\frac{2z}{1+z^{2}}\\newline cos\\ x=\\frac{1-z^{2}}{1+z^{2}}\\newline I=\\int \\frac{5dx}{4sin\\ x+3cos\\ x}dx=\\int \\frac{5(\\frac{2}{1+z^{2}})}{4(\\frac{2z}{1+z^{2}})+3(\\frac{1-z^{2}}{1+z^{2}})}dx\\newline =\\int \\frac{\\frac{10}{1+z^{2}}}{\\frac{8z}{1+z^{2}}+\\frac{3-3z^{2}}{1+z^{2}}}dz=\\int \\frac{\\frac{10}{1+z^{2}}}{\\frac{8z+3-3z^{2}}{1+z^{2}}}dz\\newline =\\int \\frac{10}{8z+3-3z^{2}}dz=\\int \\frac{10}{(3z+1)(-z+3)}dz\\newline =\\int \\frac{-10}{(3z+1)(z-3)}dz.\\newline b)\\newline \\int \\frac{-10}{(3z+1)(z-3)}dz=-[\\int \\frac{A}{3z+1}dz+\\int \\frac{B}{z-3}dz]\\newline \\frac{10}{(3z+1)(z-3)}=\\frac{A}{3z+1}+\\frac{B}{z-3}\\newline multiply\\ through\\ by\\ (3z+1)(z-3)\\newline 10=A(z-3)+B(3z+1)\\newline putting\\ z=3\\newline 10=B(3*3+1)\\newline 10=10B\\newline B=1\\newline putting\\ z=0\\newline 10=-3A+B\\newline 10=-3A+1\\newline 9=-3A\\newline A=-3\\newline the\\ integral\\ becomes:\\newline -[\\int \\frac{-3}{3z+1}dz+\\int \\frac{1}{z-3}dz]\\newline = 3\\frac{ln|3z+1|}{3}-ln|z-3|+C\\newline =ln|3z+1|-ln|z-3|+C\\newline =ln|\\frac{3z+1}{z-3}|+C"
Comments
Leave a comment