Question #222880

Consider the integral:


I= 5dx / 4 sin x + 3 cos x


(a) Use z - substitution to show that :


I = -10dz / (3z + 1)(z-3) where z = tan(x/2)


(b)  Now use the method of partial fractions to determine the integral.



1
Expert's answer
2021-08-04T16:39:36-0400

a)zsubstitutiontan(x2)=zdx=21+z2dzsin x=2z1+z2cos x=1z21+z2I=5dx4sin x+3cos xdx=5(21+z2)4(2z1+z2)+3(1z21+z2)dx=101+z28z1+z2+33z21+z2dz=101+z28z+33z21+z2dz=108z+33z2dz=10(3z+1)(z+3)dz=10(3z+1)(z3)dz.b)10(3z+1)(z3)dz=[A3z+1dz+Bz3dz]10(3z+1)(z3)=A3z+1+Bz3multiply through by (3z+1)(z3)10=A(z3)+B(3z+1)putting z=310=B(33+1)10=10BB=1putting z=010=3A+B10=3A+19=3AA=3the integral becomes:[33z+1dz+1z3dz]=3ln3z+13lnz3+C=ln3z+1lnz3+C=ln3z+1z3+Ca)z-substitution\newline tan (\frac{x}{2})=z\newline dx=\frac{2}{1+z^{2}}dz\newline sin\ x=\frac{2z}{1+z^{2}}\newline cos\ x=\frac{1-z^{2}}{1+z^{2}}\newline I=\int \frac{5dx}{4sin\ x+3cos\ x}dx=\int \frac{5(\frac{2}{1+z^{2}})}{4(\frac{2z}{1+z^{2}})+3(\frac{1-z^{2}}{1+z^{2}})}dx\newline =\int \frac{\frac{10}{1+z^{2}}}{\frac{8z}{1+z^{2}}+\frac{3-3z^{2}}{1+z^{2}}}dz=\int \frac{\frac{10}{1+z^{2}}}{\frac{8z+3-3z^{2}}{1+z^{2}}}dz\newline =\int \frac{10}{8z+3-3z^{2}}dz=\int \frac{10}{(3z+1)(-z+3)}dz\newline =\int \frac{-10}{(3z+1)(z-3)}dz.\newline b)\newline \int \frac{-10}{(3z+1)(z-3)}dz=-[\int \frac{A}{3z+1}dz+\int \frac{B}{z-3}dz]\newline \frac{10}{(3z+1)(z-3)}=\frac{A}{3z+1}+\frac{B}{z-3}\newline multiply\ through\ by\ (3z+1)(z-3)\newline 10=A(z-3)+B(3z+1)\newline putting\ z=3\newline 10=B(3*3+1)\newline 10=10B\newline B=1\newline putting\ z=0\newline 10=-3A+B\newline 10=-3A+1\newline 9=-3A\newline A=-3\newline the\ integral\ becomes:\newline -[\int \frac{-3}{3z+1}dz+\int \frac{1}{z-3}dz]\newline = 3\frac{ln|3z+1|}{3}-ln|z-3|+C\newline =ln|3z+1|-ln|z-3|+C\newline =ln|\frac{3z+1}{z-3}|+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS