Consider the following integral:
I =  ∫ 1 / (√2x2-x2) dx
(a) complete the square of f(x) = 2x2-x2
(b) use (a) together with the method of trigonometric substitution to determine the integral.
"\\displaystyle\n(a)\\\\ \\textsf{Completing the square}\\\\\n2x - x^2 = -(-2x + x^2) = -(1 - 2x + x^2) + 1 = -(x - 1)^2 + 1\\\\\n\n(b)\\\\ \\textsf{Under the substitution}\\,\\, x - 1 = \\sin\\theta\\\\\n\\begin{aligned}\n\\int \\frac{1}{\\sqrt{2x - x^2}}\\mathrm{d}x &= \\int \\frac{1}{\\sqrt{1 - (x - 1)^2}}\\mathrm{d}x\n\\\\&= \\int \\frac{1}{\\sqrt{1 - \\sin^2{\\theta}}}\\cos{\\theta}\\mathrm{d}\\theta\n\\\\&= \\int \\frac{1}{\\sqrt{\\cos^2{\\theta}}}\\cos{\\theta}\\mathrm{d}\\theta\n\\\\&= \\int \\mathrm{d}\\theta = \\theta + C\n\\\\&= \\arcsin(x - 1) + C\n\\end{aligned}"
Comments
Leave a comment