Question #222886

Consider the following integral:


I =  1 / (√2x2-x2) dx


(a) complete the square of f(x) = 2x2-x2

(b) use (a) together with the method of trigonometric substitution to determine the integral.


1
Expert's answer
2021-08-08T17:57:19-0400

(a)Completing the square2xx2=(2x+x2)=(12x+x2)+1=(x1)2+1(b)Under the substitutionx1=sinθ12xx2dx=11(x1)2dx=11sin2θcosθdθ=1cos2θcosθdθ=dθ=θ+C=arcsin(x1)+C\displaystyle (a)\\ \textsf{Completing the square}\\ 2x - x^2 = -(-2x + x^2) = -(1 - 2x + x^2) + 1 = -(x - 1)^2 + 1\\ (b)\\ \textsf{Under the substitution}\,\, x - 1 = \sin\theta\\ \begin{aligned} \int \frac{1}{\sqrt{2x - x^2}}\mathrm{d}x &= \int \frac{1}{\sqrt{1 - (x - 1)^2}}\mathrm{d}x \\&= \int \frac{1}{\sqrt{1 - \sin^2{\theta}}}\cos{\theta}\mathrm{d}\theta \\&= \int \frac{1}{\sqrt{\cos^2{\theta}}}\cos{\theta}\mathrm{d}\theta \\&= \int \mathrm{d}\theta = \theta + C \\&= \arcsin(x - 1) + C \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS