Evaluate the integral of cos(sqrt(x))dx.
Let us evaluate the integral ∫cos(x)dx\int\cos(\sqrt x)dx∫cos(x)dx.
Let us use the transformation t=x.t=\sqrt x.t=x. Then x=t2,x=t^2,x=t2, and hence dx=2tdt.dx=2tdt.dx=2tdt.
It follows that
∫cos(x)dx=2∫tcostdt\int\cos(\sqrt x)dx=2\int t\cos tdt∫cos(x)dx=2∫tcostdt
∣u=t,dv=costdt, du=dt,v=sint∣|u=t,dv=\cos tdt,\ du=dt, v=\sin t|∣u=t,dv=costdt, du=dt,v=sint∣
=2tsint−2∫sintdt=2tsint+2cost+C=2t\sin t-2\int \sin t dt=2t\sin t+2\cos t +C=2tsint−2∫sintdt=2tsint+2cost+C
=2xsin(x)+2cos(x)+C.=2\sqrt x\sin (\sqrt x)+2\cos (\sqrt x) +C.=2xsin(x)+2cos(x)+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments