Question #222789

Evaluate the integral of cos(sqrt(x))dx.


1
Expert's answer
2021-08-03T16:01:48-0400

Let us evaluate the integral cos(x)dx\int\cos(\sqrt x)dx.

Let us use the transformation t=x.t=\sqrt x. Then x=t2,x=t^2, and hence dx=2tdt.dx=2tdt.

It follows that

cos(x)dx=2tcostdt\int\cos(\sqrt x)dx=2\int t\cos tdt


u=t,dv=costdt, du=dt,v=sint|u=t,dv=\cos tdt,\ du=dt, v=\sin t|


=2tsint2sintdt=2tsint+2cost+C=2t\sin t-2\int \sin t dt=2t\sin t+2\cos t +C


=2xsin(x)+2cos(x)+C.=2\sqrt x\sin (\sqrt x)+2\cos (\sqrt x) +C.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS