Equation of the hypotenuse of a right triangle have form
y(x)=3−23x
So mass of the triangular lamina
M=∫D∫d(x,y)dxdy=0∫2dx0∫3−23xd(x,y)dy==0∫2dx0∫3−3/2x(1+x+5y)dy=0∫2dx101(1+x+5y)2∣∣03−23x=0∫2dx101[(16−213x)2−(1+x)2]=E=mc2=571centre of gravity
My=M1∫D∫yd(x,y)dxdy=M10∫261y2(3+9x+2y)∣∣03−23x==7150∫232(−1+x)2(7+5x)dx=1Mx=M1∫D∫xd(x,y)dxdy=7150∫2dx(255−209x+4165)x=8.28Answer: centre of gravity (Mx,My)=(8.28, 1)
Mass: M=571
Comments