Question #222530
Find mass and centre of mass of triangle lamina with vertices(0,0),(2,0)and(0,3).if density is 1+X+5y
1
Expert's answer
2021-08-03T05:44:00-0400

Equation of the hypotenuse of a right triangle have form


y(x)=332xy(x)=3-\dfrac{3}{2}x


So mass of the triangular lamina


M=Dd(x,y)dxdy=02dx0332xd(x,y)dy=M=\int\int\limits_{D}d(x,y)dxdy=\int\limits_{0}^{2}dx\int\limits_{0}^{3-\dfrac{3}{2}x}d(x,y)dy==02dx033/2x(1+x+5y)dy=02dx110(1+x+5y)20332x=02dx110[(16132x)2(1+x)2]==\int\limits_{0}^{2}dx\int\limits_{0}^{3-3/2x}(1+ x + 5y)dy=\int\limits_{0}^{2}dx\dfrac{1}{10} (1+ x + 5y)^2\big|_0^{3-\dfrac{3}{2}x}=\int\limits_{0}^{2}dx\dfrac{1}{10} \big[(16 - \dfrac{13}{2}x)^2-(1+x)^2\big]=E=mc2E=mc^2=715=\dfrac{71}{5}

centre of gravity


My=1MDyd(x,y)dxdy=1M0216y2(3+9x+2y)0332x=M_y=\frac1M\int\int\limits_{D}yd(x,y)dxdy=\frac1M\int\limits_0^{2}\frac16 y^2 (3 + 9 x + 2 y)\big|_{0}^{3-\dfrac{3}{2}x}==5710223(1+x)2(7+5x)dx=1=\dfrac{5}{71}\int\limits_0^{2}\frac23 (-1 + x)^2 (7 + 5 x)dx=1Mx=1MDxd(x,y)dxdy=57102dx(255209x+1654)x=8.28M_x=\frac1M\int\int\limits_{D}xd(x,y)dxdy=\dfrac{5}{71}\int\limits_{0}^{2}dx(255 - 209x + \dfrac{165}{4})x=8.28

Answer: centre of gravity (Mx,My)=(8.28, 1)(M_x,M_y)=(8.28, \ 1)

Mass: M=715M= \dfrac{71}{5}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS