Equation of the hypotenuse of a right triangle have form
y ( x ) = 3 − 3 2 x y(x)=3-\dfrac{3}{2}x y ( x ) = 3 − 2 3 x
So mass of the triangular lamina
M = ∫ ∫ D d ( x , y ) d x d y = ∫ 0 2 d x ∫ 0 3 − 3 2 x d ( x , y ) d y = M=\int\int\limits_{D}d(x,y)dxdy=\int\limits_{0}^{2}dx\int\limits_{0}^{3-\dfrac{3}{2}x}d(x,y)dy= M = ∫ D ∫ d ( x , y ) d x d y = 0 ∫ 2 d x 0 ∫ 3 − 2 3 x d ( x , y ) d y = = ∫ 0 2 d x ∫ 0 3 − 3 / 2 x ( 1 + x + 5 y ) d y = ∫ 0 2 d x 1 10 ( 1 + x + 5 y ) 2 ∣ 0 3 − 3 2 x = ∫ 0 2 d x 1 10 [ ( 16 − 13 2 x ) 2 − ( 1 + x ) 2 ] = =\int\limits_{0}^{2}dx\int\limits_{0}^{3-3/2x}(1+ x + 5y)dy=\int\limits_{0}^{2}dx\dfrac{1}{10} (1+ x + 5y)^2\big|_0^{3-\dfrac{3}{2}x}=\int\limits_{0}^{2}dx\dfrac{1}{10} \big[(16 - \dfrac{13}{2}x)^2-(1+x)^2\big]= = 0 ∫ 2 d x 0 ∫ 3 − 3/2 x ( 1 + x + 5 y ) d y = 0 ∫ 2 d x 10 1 ( 1 + x + 5 y ) 2 ∣ ∣ 0 3 − 2 3 x = 0 ∫ 2 d x 10 1 [ ( 16 − 2 13 x ) 2 − ( 1 + x ) 2 ] = E = m c 2 E=mc^2 E = m c 2 = 71 5 =\dfrac{71}{5} = 5 71 centre of gravity
M y = 1 M ∫ ∫ D y d ( x , y ) d x d y = 1 M ∫ 0 2 1 6 y 2 ( 3 + 9 x + 2 y ) ∣ 0 3 − 3 2 x = M_y=\frac1M\int\int\limits_{D}yd(x,y)dxdy=\frac1M\int\limits_0^{2}\frac16 y^2 (3 + 9 x + 2 y)\big|_{0}^{3-\dfrac{3}{2}x}= M y = M 1 ∫ D ∫ y d ( x , y ) d x d y = M 1 0 ∫ 2 6 1 y 2 ( 3 + 9 x + 2 y ) ∣ ∣ 0 3 − 2 3 x = = 5 71 ∫ 0 2 2 3 ( − 1 + x ) 2 ( 7 + 5 x ) d x = 1 =\dfrac{5}{71}\int\limits_0^{2}\frac23 (-1 + x)^2 (7 + 5 x)dx=1 = 71 5 0 ∫ 2 3 2 ( − 1 + x ) 2 ( 7 + 5 x ) d x = 1 M x = 1 M ∫ ∫ D x d ( x , y ) d x d y = 5 71 ∫ 0 2 d x ( 255 − 209 x + 165 4 ) x = 8.28 M_x=\frac1M\int\int\limits_{D}xd(x,y)dxdy=\dfrac{5}{71}\int\limits_{0}^{2}dx(255 - 209x + \dfrac{165}{4})x=8.28 M x = M 1 ∫ D ∫ x d ( x , y ) d x d y = 71 5 0 ∫ 2 d x ( 255 − 209 x + 4 165 ) x = 8.28 Answer: centre of gravity ( M x , M y ) = ( 8.28 , 1 ) (M_x,M_y)=(8.28, \ 1) ( M x , M y ) = ( 8.28 , 1 )
Mass: M = 71 5 M= \dfrac{71}{5} M = 5 71
Comments