Equation of the hypotenuse of a right triangle have form
"y(x)=3-\\dfrac{3}{2}x"
So mass of the triangular lamina
"M=\\int\\int\\limits_{D}d(x,y)dxdy=\\int\\limits_{0}^{2}dx\\int\\limits_{0}^{3-\\dfrac{3}{2}x}d(x,y)dy=""=\\int\\limits_{0}^{2}dx\\int\\limits_{0}^{3-3\/2x}(1+ x + 5y)dy=\\int\\limits_{0}^{2}dx\\dfrac{1}{10} (1+ x + 5y)^2\\big|_0^{3-\\dfrac{3}{2}x}=\\int\\limits_{0}^{2}dx\\dfrac{1}{10} \\big[(16 - \\dfrac{13}{2}x)^2-(1+x)^2\\big]=""E=mc^2""=\\dfrac{71}{5}"centre of gravity
"M_y=\\frac1M\\int\\int\\limits_{D}yd(x,y)dxdy=\\frac1M\\int\\limits_0^{2}\\frac16 y^2 (3 + 9 x + 2 y)\\big|_{0}^{3-\\dfrac{3}{2}x}=""=\\dfrac{5}{71}\\int\\limits_0^{2}\\frac23 (-1 + x)^2 (7 + 5 x)dx=1""M_x=\\frac1M\\int\\int\\limits_{D}xd(x,y)dxdy=\\dfrac{5}{71}\\int\\limits_{0}^{2}dx(255 - 209x + \\dfrac{165}{4})x=8.28"Answer: centre of gravity "(M_x,M_y)=(8.28, \\ 1)"
Mass: "M= \\dfrac{71}{5}"
Comments
Leave a comment