Question #222250

Suppose that f is a continuous function that satisfies

f(x)=x0xf(t)dt+x3f(x)=x\int_{0}^{x} f(t)dt + x³

For all x and that f(a) = 1, a ∈ R. Express f ' (a) in terms of a only:


1
Expert's answer
2021-08-02T14:47:40-0400

Given f(x)=x0xf(t)dt+x3 note that 0xf(t)dt=f(x)xx2, also f(0)=0 then we will have the following: f(x)=0xf(t)dt+x(f(x)f(0))+3x2=f(x)xx2+xf(x)xf(0)+3x2=f(x)x+2x2+xf(x)xf(0)=f(x)x+2x2+xf(x)x(0)=f(x)x+2x2+xf(x)    f(a)=f(a)a+2a2+af(a)=1a+2a2+a(1)=2a2+a+1a\text{Given $f(x) = x\int_{0}^{x}f(t)dt + x^3$ note that $\int_{0}^{x}f(t)dt = \frac{f(x)}{x} - x^2$, also $f(0) = 0$ then we will have the following: } \\ f'(x) = \int_{0}^{x}f(t)dt + x(f(x) - f(0)) + 3x^2 = \frac{f(x)}{x} - x^2 + xf(x) - xf(0) + 3x^2 \\ \qquad \,\,\, = \frac{f(x)}{x} + 2x^2 + xf(x) - x f(0) = \frac{f(x)}{x} + 2x^2 + xf(x) - x(0) = \frac{f(x)}{x} + 2x^2 + xf(x) \\ \implies f'(a) = \frac{f(a)}{a} + 2a^2 + af(a) = \frac1a + 2a^2 + a(1) = 2a^2 + a + \frac1a


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS