Find the surface area generated by revolving about x-axis the area in the second quadrant under the curve y=ex.
A=2π∫−∞0ex1+e2xdx=[u=ex,du=exdx]=2π∫−∞11+u2du=A=2\pi\int^0_{-\infty}e^x\sqrt{1+e^{2x}}dx=[u=e^x,du=e^xdx]=2\pi\int^1_{-\infty}\sqrt{1+u^2}du=A=2π∫−∞0ex1+e2xdx=[u=ex,du=exdx]=2π∫−∞11+u2du=
=[u=sinh(v),du=cosh(v)dv]=2π∫−∞ln(1+2)cosh2(v)dv==[u=sinh(v),du=cosh(v)dv]=2\pi\int^{ln(1+\sqrt{2})}_{-\infty}cosh^2(v)dv==[u=sinh(v),du=cosh(v)dv]=2π∫−∞ln(1+2)cosh2(v)dv=
=(v2+sinh(2v)4)∣v=−∞v=ln(1+2)=22+ln(1+2)2=(\frac{v}{2}+\frac{sinh(2v)}{4})|^{v=ln(1+\sqrt{2})}_{v=-\infty}= \frac{\sqrt{2}}{2}+\frac{ln(1+\sqrt{2})}{2}=(2v+4sinh(2v))∣v=−∞v=ln(1+2)=22+2ln(1+2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments