Find the surface area generated by revolving about x-axis the area in the second quadrant under the curve y=ex.
"A=2\\pi\\int^0_{-\\infty}e^x\\sqrt{1+e^{2x}}dx=[u=e^x,du=e^xdx]=2\\pi\\int^1_{-\\infty}\\sqrt{1+u^2}du="
"=[u=sinh(v),du=cosh(v)dv]=2\\pi\\int^{ln(1+\\sqrt{2})}_{-\\infty}cosh^2(v)dv="
"=(\\frac{v}{2}+\\frac{sinh(2v)}{4})|^{v=ln(1+\\sqrt{2})}_{v=-\\infty}= \\frac{\\sqrt{2}}{2}+\\frac{ln(1+\\sqrt{2})}{2}"
Comments
Leave a comment