Question #221892

a) find and classify the critical points of the functions f(x) = 2x^3 + 3x^2 - 12 x +1 into maximum, minimum and inflection points as appreciate.

(b) The sum of two positive numbers is S. find the maximum value of their product.



1
Expert's answer
2021-08-02T17:30:48-0400

Solution:

(a):

f(x)=2x3+3x212x+1f(x)=6x2+6x12f(x) = 2x^3 + 3x^2 - 12 x +1 \\f'(x)=6x^2+6x-12

Put f(x)=0f'(x)=0

6x2+6x12=0x2+x2=0x2+2xx2=0(x+2)(x1)=0x=2,x=16x^2+6x-12=0 \\\Rightarrow x^2+x-2=0 \\\Rightarrow x^2+2x-x-2=0 \\\Rightarrow (x+2)(x-1)=0 \\\Rightarrow x=-2,x=1

Critical points are x=2,x=1x=-2,x=1

Now, f(x)=12x+6f''(x)=12x+6

f(2)=12(2)+6=18<0 Maximaf''(-2)=12(-2)+6=-18<0\Rightarrow \ Maxima

f(1)=12(1)+6=18>0 Minimaf''(1)=12(1)+6=18>0\Rightarrow \ Minima

Thus, maximum value is f(2)=2(2)3+3(2)212(2)+1=21f(-2) = 2(-2)^3 + 3(-2)^2 - 12 (-2) +1=21

And minimum value is f(1)=2(1)3+3(1)212(1)+1=6f(1) = 2(1)^3 + 3(1)^2 - 12 (1) +1=-6

Now, put f(x)=0f''(x)=0

12x+6=0x=6/12=1/212x+6=0 \\\Rightarrow x=-6/12=-1/2 , this is point of inflection.

(b):

Let the first and second numbers be x,yx,y respectively.

x+y=Sx+y=S (where S is constant)

x=Sy ...(i)\Rightarrow x=S-y\ ...(i)

Let their product be P.

Then, P=xy=(Sy)yP=xy=(S-y)y [Using (i)]

P=Syy2dPdy=S2yPut dPdy=0S2y=0S=2yx+y=2yx=yP=Sy-y^2 \\\Rightarrow \dfrac{dP}{dy}=S-2y \\ Put\ \dfrac{dP}{dy}=0 \\\Rightarrow S-2y=0 \\\Rightarrow S=2y \\\Rightarrow x+y=2y \\\Rightarrow x=y

Again differentiating dPdy\dfrac{dP}{dy} :

d2Pdy2=02=2<0 Maxima\Rightarrow \dfrac{d^2P}{dy^2}=0-2=-2<0\Rightarrow\ Maxima

Thus, two numbers are equal.

So, S=x+y=x+x=2xS=x+y=x+x=2x

x=y=S2\Rightarrow x=y=\dfrac S2

Now, P=xy=S2.S2=S24P=xy=\dfrac S2.\dfrac S2=\dfrac {S^2}4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS