Solution:
(a):
f(x)=2x3+3x2−12x+1f′(x)=6x2+6x−12
Put f′(x)=0
6x2+6x−12=0⇒x2+x−2=0⇒x2+2x−x−2=0⇒(x+2)(x−1)=0⇒x=−2,x=1
Critical points are x=−2,x=1
Now, f′′(x)=12x+6
f′′(−2)=12(−2)+6=−18<0⇒ Maxima
f′′(1)=12(1)+6=18>0⇒ Minima
Thus, maximum value is f(−2)=2(−2)3+3(−2)2−12(−2)+1=21
And minimum value is f(1)=2(1)3+3(1)2−12(1)+1=−6
Now, put f′′(x)=0
12x+6=0⇒x=−6/12=−1/2 , this is point of inflection.
(b):
Let the first and second numbers be x,y respectively.
x+y=S (where S is constant)
⇒x=S−y ...(i)
Let their product be P.
Then, P=xy=(S−y)y [Using (i)]
P=Sy−y2⇒dydP=S−2yPut dydP=0⇒S−2y=0⇒S=2y⇒x+y=2y⇒x=y
Again differentiating dydP :
⇒dy2d2P=0−2=−2<0⇒ Maxima
Thus, two numbers are equal.
So, S=x+y=x+x=2x
⇒x=y=2S
Now, P=xy=2S.2S=4S2
Comments