Solution:
y1=4x2
22y2=x+4⟹y2=21x+24⟹y2=21x+2
At point of intersection, y1=y2
⟹4x2=21x+2
Multiply through by 8
⟹4x2(8)=21(8)x+2(8)
⟹2x2=4x+16
Divide through by 2
⟹22x2=24x+216
⟹x2=2x+8⟹x2−2x−8=0
Solving quadratic equation:
x2−2x−8=0
(x−4)(x+2)=0
⟹x1−4=0⟹x1=4
⟹x2+2=0⟹x2=−2
Area=∫−20(y2−y1)dx+∫04(y2−y1)dx
=∫−20(21x+2−4x2)dx+∫04(21x+2−4x2)dx
=[2×2x2+2x−4×3x3]−20+[2×2x2+2x−4×3x3]04
=[4x2+2x−12x3]−20+[4x2+2x−12x3]04
=(402+2(0)−1203)−(4(−2)2+2(−2)−12(−2)3)+(442+2(4)−1243)−(402+2(0)−12(0)3)
=(0+0−0)−(1−4+0.666666666)+(4+8−5.333333333)−(0+0−0)
=4−1−0.666666666+4+8−5.333333333
=9.000000001 square units
Comments