Find the area bounded bounded by the following curves, y=x2/4 and x+4=2y.
Solution:
"y_1={x^2\\over4}"
"{2\\over 2}y_2=x+4 \\implies y_2={1\\over 2}x+{4\\over 2}\\implies y_2={1\\over 2}x+2"
At point of intersection, "y_1=y_2"
"\\implies {x^2\\over4}={1\\over 2}x+2"
Multiply through by "8"
"\\implies {x^2\\over4}(8)={1\\over 2}(8)x+2(8)"
"\\implies 2x^2=4x+16"
Divide through by "2"
"\\implies { 2\\over 2}x^2={4\\over 2}x+{16\\over 2}"
"\\implies x^2=2x+8 \\implies x^2-2x-8 =0"
Solving quadratic equation:
"x^2-2x-8 =0"
"(x-4)(x+2)=0"
"\\implies x_1-4=0 \\implies x_1=4"
"\\implies x_2+2=0 \\implies x_2=-2"
"Area=\\int_{-2}^0(y_2-y_1)dx+\\int_0^4(y_2-y_1)dx"
"=\\int_{-2}^0({1\\over 2}x+2-{x^2\\over4})dx+\\int_0^4({1\\over 2}x+2-{x^2\\over4})dx"
"=[{x^2\\over 2\\times 2}+2x-{x^3\\over 4\\times 3}]_{-2}^0+[{x^2\\over 2\\times 2}+2x-{x^3\\over 4\\times 3}]_0^4"
"=[{x^2\\over 4}+2x-{x^3\\over 12}]_{-2}^0+[{x^2\\over 4}+2x-{x^3\\over 12}]_0^4"
"=({0^2\\over 4}+2(0)-{0^3\\over 12})-({(-2)^2\\over 4}+2(-2)-{(-2)^3\\over 12})+({4^2\\over 4}+2(4)-{4^3\\over 12})-({0^2\\over 4}+2(0)-{(0)^3\\over 12})"
"=(0+0-0)-(1-4+0.666666666)+(4+8-5.333333333)-(0+0-0)"
"=4-1-0.666666666+4+8-5.333333333"
"=9.000000001" square units
Comments
Leave a comment