Question #222240

Find the area bounded bounded by the following curves, y=x2/4 and x+4=2y.


1
Expert's answer
2021-08-02T13:51:14-0400

Solution:

y1=x24y_1={x^2\over4}

22y2=x+4    y2=12x+42    y2=12x+2{2\over 2}y_2=x+4 \implies y_2={1\over 2}x+{4\over 2}\implies y_2={1\over 2}x+2

At point of intersection, y1=y2y_1=y_2

    x24=12x+2\implies {x^2\over4}={1\over 2}x+2

Multiply through by 88

    x24(8)=12(8)x+2(8)\implies {x^2\over4}(8)={1\over 2}(8)x+2(8)

    2x2=4x+16\implies 2x^2=4x+16

Divide through by 22

    22x2=42x+162\implies { 2\over 2}x^2={4\over 2}x+{16\over 2}

    x2=2x+8    x22x8=0\implies x^2=2x+8 \implies x^2-2x-8 =0

Solving quadratic equation:

x22x8=0x^2-2x-8 =0

(x4)(x+2)=0(x-4)(x+2)=0

    x14=0    x1=4\implies x_1-4=0 \implies x_1=4

    x2+2=0    x2=2\implies x_2+2=0 \implies x_2=-2

Area=20(y2y1)dx+04(y2y1)dxArea=\int_{-2}^0(y_2-y_1)dx+\int_0^4(y_2-y_1)dx

=20(12x+2x24)dx+04(12x+2x24)dx=\int_{-2}^0({1\over 2}x+2-{x^2\over4})dx+\int_0^4({1\over 2}x+2-{x^2\over4})dx

=[x22×2+2xx34×3]20+[x22×2+2xx34×3]04=[{x^2\over 2\times 2}+2x-{x^3\over 4\times 3}]_{-2}^0+[{x^2\over 2\times 2}+2x-{x^3\over 4\times 3}]_0^4

=[x24+2xx312]20+[x24+2xx312]04=[{x^2\over 4}+2x-{x^3\over 12}]_{-2}^0+[{x^2\over 4}+2x-{x^3\over 12}]_0^4

=(024+2(0)0312)((2)24+2(2)(2)312)+(424+2(4)4312)(024+2(0)(0)312)=({0^2\over 4}+2(0)-{0^3\over 12})-({(-2)^2\over 4}+2(-2)-{(-2)^3\over 12})+({4^2\over 4}+2(4)-{4^3\over 12})-({0^2\over 4}+2(0)-{(0)^3\over 12})

=(0+00)(14+0.666666666)+(4+85.333333333)(0+00)=(0+0-0)-(1-4+0.666666666)+(4+8-5.333333333)-(0+0-0)

=410.666666666+4+85.333333333=4-1-0.666666666+4+8-5.333333333

=9.000000001=9.000000001 square units




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS