Let
f(x)=x2 ,g(x)=2x+3
Formulas for centroid of area:
A=∫ab(g(x)−f(x))dxx=A1∫abx(g(x)−f(x))dxy=A1∫ab21((g(x))2−(f(x))2)dx
Find the a and b:
x2=2x+3x2−2x−3=0x1=−1;x2=3
A=∫−13(2x+3−x2)dx=x2+3x−3x3∣−13==9+9−9−(1−3−31)=11+31=334
x=343∫−13x(2x+3−x2)dx=343∫−13(2x2+3x−x3)dx==343(32x3+23x2−4x4∣−13)=343(18+227−481−(−32+23−41))=1716
y=343∫−1321((2x+3)2−x4)dx=683∫−13(4x2+12x+9−x4)dx==683(34x3+6x2+9x−5x5)∣−13=683(36+54+27−5243−(−34+6−9+51))==516
So centroid point's coordinate is (1716;516)
Comments
Leave a comment