Find the centroid of the area bounded by the parabola y=x2 and the line 2x+3.
Let
"f(x) = x^2\\ ,g(x) = 2x+3"
Formulas for centroid of area:
"A = \\int_a^b(g(x)-f(x))dx\\\\\n\\overline x = \\cfrac{1}{A} \\int_a^b x(g(x)-f(x))dx\\\\\n\\overline y = \\cfrac{1}{A} \\int_a^b \\cfrac{1}{2}((g(x))^2 - (f(x))^2)dx"
Find the "a" and "b":
"x^2 = 2x+3\\\\\nx^2 -2x-3 = 0\\\\\nx_1 = -1;x_2 = 3"
"A = \\int_{-1}^3(2x+3-x^2)dx = x^2+3x-\\cfrac{x^3}{3}|_{-1}^3 =\\\\\n=9+9-9-(1-3-\\cfrac{1}{3})=11+\\cfrac{1}{3} = \\cfrac{34}{3}"
"\\overline x = \\cfrac{3}{34}\\int_{-1}^3 x(2x+3-x^2)dx = \\cfrac{3}{34}\\int_{-1}^3(2x^2+3x-x^3)dx =\\\\\n=\\cfrac{3}{34}(\\cfrac{2x^3}{3}+\\cfrac{3x^2}{2}-\\cfrac{x^4}{4}|_{-1}^3)=\\cfrac{3}{34}(18+\\cfrac{27}{2}-\\cfrac{81}{4}-(-\\cfrac{2}{3}+\\cfrac{3}{2}-\\cfrac{1}{4})) = \\cfrac{16}{17}"
"\\overline y= \\cfrac{3}{34}\\int_{-1}^3\\cfrac{1}{2}((2x+3)^2-x^4)dx = \\cfrac{3}{68}\\int_{-1}^3(4x^2+12x+9-x^4)dx = \\\\\n= \\cfrac{3}{68}(\\cfrac{4x^3}{3}+6x^2+9x-\\cfrac{x^5}{5})|_{-1}^3 = \\cfrac{3}{68}(36+54+27-\\cfrac{243}{5}-(-\\cfrac{4}{3}+6-9+\\cfrac{1}{5})) = \\\\\n=\\cfrac{16}{5}"
So centroid point's coordinate is "(\\cfrac{16}{17};\\cfrac{16}{5})"
Comments
Leave a comment