Answer to Question #222239 in Calculus for Besh

Question #222239

Find the centroid of the area bounded by the parabola y=x2 and the line 2x+3.


1
Expert's answer
2021-08-02T14:48:45-0400

Let

f(x)=x2 ,g(x)=2x+3f(x) = x^2\ ,g(x) = 2x+3

Formulas for centroid of area:

A=ab(g(x)f(x))dxx=1Aabx(g(x)f(x))dxy=1Aab12((g(x))2(f(x))2)dxA = \int_a^b(g(x)-f(x))dx\\ \overline x = \cfrac{1}{A} \int_a^b x(g(x)-f(x))dx\\ \overline y = \cfrac{1}{A} \int_a^b \cfrac{1}{2}((g(x))^2 - (f(x))^2)dx

Find the aa and bb:

x2=2x+3x22x3=0x1=1;x2=3x^2 = 2x+3\\ x^2 -2x-3 = 0\\ x_1 = -1;x_2 = 3

A=13(2x+3x2)dx=x2+3xx3313==9+99(1313)=11+13=343A = \int_{-1}^3(2x+3-x^2)dx = x^2+3x-\cfrac{x^3}{3}|_{-1}^3 =\\ =9+9-9-(1-3-\cfrac{1}{3})=11+\cfrac{1}{3} = \cfrac{34}{3}

x=33413x(2x+3x2)dx=33413(2x2+3xx3)dx==334(2x33+3x22x4413)=334(18+272814(23+3214))=1617\overline x = \cfrac{3}{34}\int_{-1}^3 x(2x+3-x^2)dx = \cfrac{3}{34}\int_{-1}^3(2x^2+3x-x^3)dx =\\ =\cfrac{3}{34}(\cfrac{2x^3}{3}+\cfrac{3x^2}{2}-\cfrac{x^4}{4}|_{-1}^3)=\cfrac{3}{34}(18+\cfrac{27}{2}-\cfrac{81}{4}-(-\cfrac{2}{3}+\cfrac{3}{2}-\cfrac{1}{4})) = \cfrac{16}{17}

y=3341312((2x+3)2x4)dx=36813(4x2+12x+9x4)dx==368(4x33+6x2+9xx55)13=368(36+54+272435(43+69+15))==165\overline y= \cfrac{3}{34}\int_{-1}^3\cfrac{1}{2}((2x+3)^2-x^4)dx = \cfrac{3}{68}\int_{-1}^3(4x^2+12x+9-x^4)dx = \\ = \cfrac{3}{68}(\cfrac{4x^3}{3}+6x^2+9x-\cfrac{x^5}{5})|_{-1}^3 = \cfrac{3}{68}(36+54+27-\cfrac{243}{5}-(-\cfrac{4}{3}+6-9+\cfrac{1}{5})) = \\ =\cfrac{16}{5}

So centroid point's coordinate is (1617;165)(\cfrac{16}{17};\cfrac{16}{5})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment