Solution;
Use the disc method;
V=π∫ab(f(x))2dx
Given;
f(x)=sin(x)
For one arch of the sine curve function,the limits varies from 0 to π
a=0
b=π
Substitute in the formula;
V=π∫0π(sin(x))2dx
V=π∫02(sin2(x)dx
By the trigonometric identity;
cos(2x)=1-2sin2(x)
Gives; sin2(x)=21−cos(2x)
By substitution;
V=π∫0π(21−cos(2x))dx
V=2π[∫0π(1−cos(2x))dx
V=2π[∫0π1dx−∫0πcos(2x)dx
V=2π[x]0π−2π[2sin(2x)]0π
V=2π[π]−4π[sin(2π)−sin(0)]
V=2π2−4π(0)
V=2π2
Answer;
2π2 cubic units.
Comments