Question #222243

The area under one arch of the sine curve revolves about the x-axis. Find the volume generated.


1
Expert's answer
2021-08-03T12:36:26-0400

Solution;

Use the disc method;

V=πab(f(x))2dxV=π\int_a^b(f(x))^2dx

Given;

f(x)=sin(x)

For one arch of the sine curve function,the limits varies from 0 to π

a=0

b=π

Substitute in the formula;

V=π0π(sin(x))2dxV=π\int_0^π(sin(x))^2dx

V=π02(sin2(x)dxV=π\int_0^2(sin^2(x)dx

By the trigonometric identity;

cos(2x)=1-2sin2(x)

Gives; sin2(x)=1cos(2x)2sin^2(x)=\frac{1-cos(2x)}{2}

By substitution;

V=π0π(1cos(2x)2)dxV=π\int_0^π(\frac{1-cos(2x)}{2})dx

V=π2[0π(1cos(2x))dxV=\fracπ2[\int_0^π(1-cos(2x))dx

V=π2[0π1dx0πcos(2x)dxV=\fracπ2[\int_0^π1dx-\int_0^πcos(2x)dx

V=π2[x]0ππ2[sin(2x)2]0πV=\fracπ2[x]_0^π-\fracπ2[\frac{sin(2x)}{2}]_0^π

V=π2[π]π4[sin(2π)sin(0)]V=\fracπ2[π]-\fracπ4[sin(2π)-sin(0)]

V=π22π4(0)V=\frac{π^2}{2}-\fracπ4(0)

V=π22V=\frac{π^2}{2}

Answer;

π22\frac{π^2}{2} cubic units.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS