The area under one arch of the sine curve revolves about the x-axis. Find the volume generated.
Solution;
Use the disc method;
"V=\u03c0\\int_a^b(f(x))^2dx"
Given;
f(x)=sin(x)
For one arch of the sine curve function,the limits varies from 0 to π
a=0
b=π
Substitute in the formula;
"V=\u03c0\\int_0^\u03c0(sin(x))^2dx"
"V=\u03c0\\int_0^2(sin^2(x)dx"
By the trigonometric identity;
cos(2x)=1-2sin2(x)
Gives; "sin^2(x)=\\frac{1-cos(2x)}{2}"
By substitution;
"V=\u03c0\\int_0^\u03c0(\\frac{1-cos(2x)}{2})dx"
"V=\\frac\u03c02[\\int_0^\u03c0(1-cos(2x))dx"
"V=\\frac\u03c02[\\int_0^\u03c01dx-\\int_0^\u03c0cos(2x)dx"
"V=\\frac\u03c02[x]_0^\u03c0-\\frac\u03c02[\\frac{sin(2x)}{2}]_0^\u03c0"
"V=\\frac\u03c02[\u03c0]-\\frac\u03c04[sin(2\u03c0)-sin(0)]"
"V=\\frac{\u03c0^2}{2}-\\frac\u03c04(0)"
"V=\\frac{\u03c0^2}{2}"
Answer;
"\\frac{\u03c0^2}{2}" cubic units.
Comments
Leave a comment