limx→∞(∣x∣+1)=?x is positive when x→∞. Therefore ∣x∣=x.=limx(x+1)Applying Infinity property:limx→∞(axn+...+bx+c)=∞a>0, n is odda=1, n=1hence=∞thus limx→∞(∣x∣+1)=∞\lim\limits_{x\to\infin}(|x|+1)=?\newline x\ is\ positive\ when\ x\to\infin.\ Therefore\ |x|=x.\newline =\lim\limits_x(x+1)\newline Applying\ Infinity\ property: \newline \lim\limits_{x\to\infin}(ax^{n}+...+bx+c)=\infin\newline a>0,\ n\ is\ odd\newline a=1,\ n=1\newline hence=\infin\newline thus\ \lim\limits_{x\to\infin}(|x|+1)=\infinx→∞lim(∣x∣+1)=?x is positive when x→∞. Therefore ∣x∣=x.=xlim(x+1)Applying Infinity property:x→∞lim(axn+...+bx+c)=∞a>0, n is odda=1, n=1hence=∞thus x→∞lim(∣x∣+1)=∞
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment