Answer to Question #223046 in Calculus for Bawe Bilanyuy

Question #223046

Evaluate ∫0π √(1+cos8xdx)


1
Expert's answer
2021-08-31T16:18:32-0400

0π1+cos8xdx=0π2cos24xdx==0π2cos4xdx==0π82cos4xdxπ83π82cos4xdx++3π85π82cos4xdx5π87π82cos4xdx++7π8π2cos4xdx==214sin4x0π8214sin4xπ83π8++214sin4x3π85π8214sin4x5π87π8++214sin4x7π8π==24(sinπ2sin0sin3π2+sinπ2++sin5π2sin3π2sin7π2+sin5π2++sin4πsin7π2)==24(10+1+1+1+1+1+1+0+1)==22\int_{0}^{\pi}\sqrt{1+cos8x}dx=\int_{0}^{\pi}\sqrt{2cos^24x}dx=\\ =\int_{0}^{\pi}\sqrt{2}|cos4x|dx=\\ =\int_{0}^{\frac{\pi}{8}}\sqrt{2}cos4xdx-\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}}\sqrt{2}cos4xdx+\\ +\int_{\frac{3\pi}{8}}^{\frac{5\pi}{8}}\sqrt{2}cos4xdx-\int_{\frac{5\pi}{8}}^{\frac{7\pi}{8}}\sqrt{2}cos4xdx+\\ +\int_{\frac{7\pi}{8}}^{\pi}\sqrt{2}cos4xdx=\\ =\sqrt{2}\cdot \frac{1}{4}\cdot sin4x|^{\frac{\pi}{8}}_{0} - \sqrt{2}\cdot \frac{1}{4}\cdot sin4x|^{\frac{3\pi}{8}}_{\frac{\pi}{8}}+\\ +\sqrt{2}\cdot \frac{1}{4}\cdot sin4x|^{\frac{5\pi}{8}}_{\frac{3\pi}{8}}-\sqrt{2}\cdot \frac{1}{4}\cdot sin4x|^{\frac{7\pi}{8}}_{\frac{5\pi}{8}}+\\ +\sqrt{2}\cdot \frac{1}{4}\cdot sin4x|^{\pi}_{\frac{7\pi}{8}}=\\ =\frac{\sqrt2}{4}(sin\frac{\pi}{2}-sin0 -sin\frac{3\pi}{2}+sin\frac{\pi}{2}+\\ +sin\frac{5\pi}{2}-sin\frac{3\pi}{2}-sin\frac{7\pi}{2}+sin\frac{5\pi}{2}+\\ +sin4\pi-sin\frac{7\pi}{2})=\\ =\frac{\sqrt2}{4}(1-0+1+1+1+1+1+1+0+1)=\\ =2\sqrt2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment