∫0π1+cos8xdx=∫0π2cos24xdx==∫0π2∣cos4x∣dx==∫08π2cos4xdx−∫8π83π2cos4xdx++∫83π85π2cos4xdx−∫85π87π2cos4xdx++∫87ππ2cos4xdx==2⋅41⋅sin4x∣08π−2⋅41⋅sin4x∣8π83π++2⋅41⋅sin4x∣83π85π−2⋅41⋅sin4x∣85π87π++2⋅41⋅sin4x∣87ππ==42(sin2π−sin0−sin23π+sin2π++sin25π−sin23π−sin27π+sin25π++sin4π−sin27π)==42(1−0+1+1+1+1+1+1+0+1)==22
Comments
Leave a comment