Question #223043


Evaluate the limit as x turns to 2+

lim {sin[In (x-1)] / √(x-2)}



1
Expert's answer
2021-08-30T17:35:36-0400

limx2+{sin[ln(x1)]x2}\lim _{x \rightarrow 2^{+}}\left\{\frac{\sin [\ln (x-1)]}{\sqrt{x-2}}\right\}

This is 00\frac{0}{0} form as  sin[ln(21)]=sin[ln1]=sin0=022=0\sin [\ln (2-1)]=\sin [\ln 1]=\sin 0=0 \sqrt{2-2}=0 and 22=0\sqrt{2-2}=0

So, using L' Hospital rule, 

limx2+{sin[ln(x1)]x2}=limx2+ddx(sin[ln(x1)])ddx(x2)=limx2+cos[ln(x1)]ddx(ln(x1))12(x2)12\lim _{x \rightarrow 2^{+}}\left\{\frac{\sin [\ln (x-1)]}{\sqrt{x-2}}\right\}\\=\lim _{x \rightarrow 2^{+}} \frac{\frac{d}{d x}(\sin [\ln (x-1)])}{\frac{d}{d x}(\sqrt{x-2})}\\=\lim _{x \rightarrow 2^{+}} \frac{\cos [\ln (x-1)] \cdot \frac{d}{d x}(\ln (x-1))}{\frac{1}{2}(x-2)^{-\frac{1}{2}}}

=limx2+2(x2)12cos[ln(x1)](1x1)=limh02(h+22)12cos[ln(h+21)](1h+21)=\lim _{x \rightarrow 2^{+}} 2(x-2)^{\frac{1}{2}} \cdot \cos [\ln (x-1)] \cdot\left(\frac{1}{x-1}\right)\\=\lim _{h \rightarrow 0} 2(h+2-2)^{\frac{1}{2}} \cdot \cos [\ln (h+2-1)] \cdot\left(\frac{1}{h+2-1}\right)

=limh02(h)12cos[ln(h+1)](1h+1)=2×0×cos[ln(1)]×1=2×0×cos[0]×1=0=\lim _{h \rightarrow 0} 2(h)^{\frac{1}{2}} \cdot \cos [\ln (h+1)] \cdot\left(\frac{1}{h+1}\right)\\=2 \times 0 \times \cos [\ln (1)] \times 1\\=2 \times 0 \times \cos [0] \times 1=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS