lim x → 2 + { sin [ ln ( x − 1 ) ] x − 2 } \lim _{x \rightarrow 2^{+}}\left\{\frac{\sin [\ln (x-1)]}{\sqrt{x-2}}\right\} lim x → 2 + { x − 2 s i n [ l n ( x − 1 )] }
This is 0 0 \frac{0}{0} 0 0 form as sin [ ln ( 2 − 1 ) ] = sin [ ln 1 ] = sin 0 = 0 2 − 2 = 0 \sin [\ln (2-1)]=\sin [\ln 1]=\sin 0=0 \sqrt{2-2}=0 sin [ ln ( 2 − 1 )] = sin [ ln 1 ] = sin 0 = 0 2 − 2 = 0 and 2 − 2 = 0 \sqrt{2-2}=0 2 − 2 = 0
So, using L' Hospital rule,
lim x → 2 + { sin [ ln ( x − 1 ) ] x − 2 } = lim x → 2 + d d x ( sin [ ln ( x − 1 ) ] ) d d x ( x − 2 ) = lim x → 2 + cos [ ln ( x − 1 ) ] ⋅ d d x ( ln ( x − 1 ) ) 1 2 ( x − 2 ) − 1 2 \lim _{x \rightarrow 2^{+}}\left\{\frac{\sin [\ln (x-1)]}{\sqrt{x-2}}\right\}\\=\lim _{x \rightarrow 2^{+}} \frac{\frac{d}{d x}(\sin [\ln (x-1)])}{\frac{d}{d x}(\sqrt{x-2})}\\=\lim _{x \rightarrow 2^{+}} \frac{\cos [\ln (x-1)] \cdot \frac{d}{d x}(\ln (x-1))}{\frac{1}{2}(x-2)^{-\frac{1}{2}}} lim x → 2 + { x − 2 s i n [ l n ( x − 1 )] } = lim x → 2 + d x d ( x − 2 ) d x d ( s i n [ l n ( x − 1 )]) = lim x → 2 + 2 1 ( x − 2 ) − 2 1 c o s [ l n ( x − 1 )] ⋅ d x d ( l n ( x − 1 ))
= lim x → 2 + 2 ( x − 2 ) 1 2 ⋅ cos [ ln ( x − 1 ) ] ⋅ ( 1 x − 1 ) = lim h → 0 2 ( h + 2 − 2 ) 1 2 ⋅ cos [ ln ( h + 2 − 1 ) ] ⋅ ( 1 h + 2 − 1 ) =\lim _{x \rightarrow 2^{+}} 2(x-2)^{\frac{1}{2}} \cdot \cos [\ln (x-1)] \cdot\left(\frac{1}{x-1}\right)\\=\lim _{h \rightarrow 0} 2(h+2-2)^{\frac{1}{2}} \cdot \cos [\ln (h+2-1)] \cdot\left(\frac{1}{h+2-1}\right) = lim x → 2 + 2 ( x − 2 ) 2 1 ⋅ cos [ ln ( x − 1 )] ⋅ ( x − 1 1 ) = lim h → 0 2 ( h + 2 − 2 ) 2 1 ⋅ cos [ ln ( h + 2 − 1 )] ⋅ ( h + 2 − 1 1 )
= lim h → 0 2 ( h ) 1 2 ⋅ cos [ ln ( h + 1 ) ] ⋅ ( 1 h + 1 ) = 2 × 0 × cos [ ln ( 1 ) ] × 1 = 2 × 0 × cos [ 0 ] × 1 = 0 =\lim _{h \rightarrow 0} 2(h)^{\frac{1}{2}} \cdot \cos [\ln (h+1)] \cdot\left(\frac{1}{h+1}\right)\\=2 \times 0 \times \cos [\ln (1)] \times 1\\=2 \times 0 \times \cos [0] \times 1=0 = lim h → 0 2 ( h ) 2 1 ⋅ cos [ ln ( h + 1 )] ⋅ ( h + 1 1 ) = 2 × 0 × cos [ ln ( 1 )] × 1 = 2 × 0 × cos [ 0 ] × 1 = 0
Comments