limx→2+{x−2sin[ln(x−1)]}
This is 00 form as sin[ln(2−1)]=sin[ln1]=sin0=02−2=0 and 2−2=0
So, using L' Hospital rule,
limx→2+{x−2sin[ln(x−1)]}=limx→2+dxd(x−2)dxd(sin[ln(x−1)])=limx→2+21(x−2)−21cos[ln(x−1)]⋅dxd(ln(x−1))
=limx→2+2(x−2)21⋅cos[ln(x−1)]⋅(x−11)=limh→02(h+2−2)21⋅cos[ln(h+2−1)]⋅(h+2−11)
=limh→02(h)21⋅cos[ln(h+1)]⋅(h+11)=2×0×cos[ln(1)]×1=2×0×cos[0]×1=0
Comments