Evaluate the limit as x turns to 2+
lim {sin[In (x-1)] / √(x-2)}
"\\lim _{x \\rightarrow 2^{+}}\\left\\{\\frac{\\sin [\\ln (x-1)]}{\\sqrt{x-2}}\\right\\}"
This is "\\frac{0}{0}" form as "\\sin [\\ln (2-1)]=\\sin [\\ln 1]=\\sin 0=0 \\sqrt{2-2}=0" and "\\sqrt{2-2}=0"
So, using L' Hospital rule,Â
"\\lim _{x \\rightarrow 2^{+}}\\left\\{\\frac{\\sin [\\ln (x-1)]}{\\sqrt{x-2}}\\right\\}\\\\=\\lim _{x \\rightarrow 2^{+}} \\frac{\\frac{d}{d x}(\\sin [\\ln (x-1)])}{\\frac{d}{d x}(\\sqrt{x-2})}\\\\=\\lim _{x \\rightarrow 2^{+}} \\frac{\\cos [\\ln (x-1)] \\cdot \\frac{d}{d x}(\\ln (x-1))}{\\frac{1}{2}(x-2)^{-\\frac{1}{2}}}"
"=\\lim _{x \\rightarrow 2^{+}} 2(x-2)^{\\frac{1}{2}} \\cdot \\cos [\\ln (x-1)] \\cdot\\left(\\frac{1}{x-1}\\right)\\\\=\\lim _{h \\rightarrow 0} 2(h+2-2)^{\\frac{1}{2}} \\cdot \\cos [\\ln (h+2-1)] \\cdot\\left(\\frac{1}{h+2-1}\\right)"
"=\\lim _{h \\rightarrow 0} 2(h)^{\\frac{1}{2}} \\cdot \\cos [\\ln (h+1)] \\cdot\\left(\\frac{1}{h+1}\\right)\\\\=2 \\times 0 \\times \\cos [\\ln (1)] \\times 1\\\\=2 \\times 0 \\times \\cos [0] \\times 1=0"
Comments
Leave a comment