Solution: f ( x ) = e x ( 1 + l n ( x ) ) f(x)=e^x (1+ln(x)) f ( x ) = e x ( 1 + l n ( x )) By the Product Rule, we have
f ′ ( x ) = d d x ( e x ( 1 + l n ( x ) ) ) = ( 1 + l n ( x ) ) d d x e x f'(x)=\frac{d}{dx}(e^x(1+ln(x)))= (1+ln(x))\frac{d}{dx}e^x f ′ ( x ) = d x d ( e x ( 1 + l n ( x ))) = ( 1 + l n ( x )) d x d e x + e x d d x ( 1 + l n ( x ) ) = { t h e S u m R u l e } +e^x \frac{d}{dx}(1+ln(x))=\{the\space Sum \space Rule\} + e x d x d ( 1 + l n ( x )) = { t h e S u m R u l e } = ( 1 + l n ( x ) ) d d x e x + e x ( d d x 1 + d d x l n ( x ) ) =(1+ln(x))\frac{d}{dx}e^x+e^x (\frac{d}{dx}1+\frac{d}{dx}ln(x)) = ( 1 + l n ( x )) d x d e x + e x ( d x d 1 + d x d l n ( x )) = ( 1 + l n ( x ) ) e x + e x ( 0 + 1 x ) = e x ( 1 + l n ( x ) + 1 x ) =(1+ln(x))e^x+e^x (0+\frac{1}{x})=e^x(1+ln(x)+\frac{1}{x}) = ( 1 + l n ( x )) e x + e x ( 0 + x 1 ) = e x ( 1 + l n ( x ) + x 1 ) Answer: f ′ ( x ) = e x ( 1 + l n ( x ) + 1 x ) f'(x)=e^x (1+ln(x)+\frac{1}{x}) f ′ ( x ) = e x ( 1 + l n ( x ) + x 1 )
Solution: f ( x ) = x 3 e 1 / x f(x)=x^3e^{1/x} f ( x ) = x 3 e 1/ x By the Product Rule, we have
f ′ ( x ) = d d x ( x 3 e 1 / x ) = e 1 / x d d x x 3 + x 3 d d x e 1 / x f'(x)=\frac{d}{dx}(x^3e^{1/x} )=e^{1/x}\frac{d}{dx}x^3+x^3 \frac{d}{dx}e^{1/x} f ′ ( x ) = d x d ( x 3 e 1/ x ) = e 1/ x d x d x 3 + x 3 d x d e 1/ x By the Chain Rule: let u=1/x
f ′ ( x ) = e 1 / x d d x x 3 + x 3 d d u e u d d x ( 1 / x ) f'(x)=e^{1/x}\frac{d}{dx}x^3+x^3 \frac{d}{du}e^u\frac{d}{dx}(1/x) f ′ ( x ) = e 1/ x d x d x 3 + x 3 d u d e u d x d ( 1/ x ) = e 1 / x 3 x 2 + x 3 e 1 / x ( − 1 / x 2 ) = x e 1 / x ( 3 x − 1 ) =e^{1/x}3x^2+x^3 e^{1/x}(-1/x^2)=xe^{1/x}(3x-1) = e 1/ x 3 x 2 + x 3 e 1/ x ( − 1/ x 2 ) = x e 1/ x ( 3 x − 1 ) Answer: f ′ ( x ) = x e 1 / x ( 3 x − 1 ) f'(x)=xe^{1/x}(3x-1) f ′ ( x ) = x e 1/ x ( 3 x − 1 )
Solution: f ( x ) = ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 3 / 2 f(x)=\frac{(x+1)\sqrt{x^2 -1}}{(x^2+1)^{3/2}} f ( x ) = ( x 2 + 1 ) 3/2 ( x + 1 ) x 2 − 1 By the Quotient Rule, we have
f ′ ( x ) = d d x ( ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 3 / 2 ) f'(x)=\frac{d}{dx}\Big(\frac{(x+1)\sqrt{x^2 -1}}{(x^2+1)^{3/2}} \Big) f ′ ( x ) = d x d ( ( x 2 + 1 ) 3/2 ( x + 1 ) x 2 − 1 ) = ( x 2 + 1 ) 3 / 2 d d x ( ( x + 1 ) x 2 − 1 ) − ( x + 1 ) x 2 − 1 d d x ( x 2 + 1 ) 3 / 2 ( ( x 2 + 1 ) 3 / 2 ) 2 ( 1 ) =\frac{(x^2+1)^{3/2}\frac{d}{dx}((x+1)\sqrt{x^2 -1})-(x+1)\sqrt{x^2 -1}\frac{d}{dx}(x^2+1)^{3/2}}{((x^2+1)^{3/2})^2} \space (1) = (( x 2 + 1 ) 3/2 ) 2 ( x 2 + 1 ) 3/2 d x d (( x + 1 ) x 2 − 1 ) − ( x + 1 ) x 2 − 1 d x d ( x 2 + 1 ) 3/2 ( 1 ) By the Product Rule
d d x ( ( x + 1 ) x 2 − 1 ) = x 2 − 1 d d x ( x + 1 ) \frac{d}{dx}((x+1)\sqrt{x^2 -1})=\sqrt{x^2 -1}\frac{d}{dx}(x+1) d x d (( x + 1 ) x 2 − 1 ) = x 2 − 1 d x d ( x + 1 ) + ( x + 1 ) d d x x 2 − 1 ( 2 ) +(x+1)\frac{d}{dx}\sqrt{x^2 -1} \qquad (2) + ( x + 1 ) d x d x 2 − 1 ( 2 ) By the Sum Rule
d d x ( x + 1 ) = d d x x + d d x 1 = 1 + 0 = 1 ( 3 ) \frac{d}{dx}(x+1)=\frac{d}{dx}x+\frac{d}{dx}1=1+0=1 \qquad (3) d x d ( x + 1 ) = d x d x + d x d 1 = 1 + 0 = 1 ( 3 ) By the Chain Rule: let u = x 2 − 1 u=x^2-1 u = x 2 − 1
d d x x 2 − 1 = d d u u d d x ( x 2 − 1 ) = { t h e D i f f e r e n c e R u l e } \frac{d}{dx}\sqrt{x^2 -1}=\frac{d}{du}\sqrt{u}\frac{d}{dx}(x^2 -1)=\{the\space Difference \space Rule\} d x d x 2 − 1 = d u d u d x d ( x 2 − 1 ) = { t h e D i ff ere n ce R u l e } = d d u ( u ) ( d d x x 2 − d d x 1 ) = 1 2 x 2 − 1 ( 2 x − 0 ) =\frac{d}{du}(\sqrt{u})\Big(\frac{d}{dx}x^2 -\frac{d}{dx}1\Big)=\frac{1}{2\sqrt{x^2 -1}}(2x-0) = d u d ( u ) ( d x d x 2 − d x d 1 ) = 2 x 2 − 1 1 ( 2 x − 0 ) = x x 2 − 1 ( 4 ) =\frac{x}{\sqrt{x^2 -1}}\qquad(4) = x 2 − 1 x ( 4 ) substitute (3), (4) into (2)
d d x ( ( x + 1 ) x 2 − 1 ) = x 2 − 1 + x ( x + 1 ) x 2 − 1 ( 5 ) \frac{d}{dx}((x+1)\sqrt{x^2 -1})=\sqrt{x^2 -1}+\frac{x(x+1)}{\sqrt{x^2 -1}}\qquad (5) d x d (( x + 1 ) x 2 − 1 ) = x 2 − 1 + x 2 − 1 x ( x + 1 ) ( 5 ) By the Chain Rule: let u = x 2 + 1 u=x^2+1 u = x 2 + 1
d d x ( x 2 + 1 ) 3 / 2 = d u 3 / 2 d u d d x ( x 2 + 1 ) = d u 3 / 2 d u ( d d x x 2 + d d x 1 ) \frac{d}{dx}(x^2+1)^{3/2}=\frac{du^{3/2}}{du}\frac{d}{dx}(x^2+1)=\frac{du^{3/2}}{du}(\frac{d}{dx}x^2+\frac{d}{dx}1) d x d ( x 2 + 1 ) 3/2 = d u d u 3/2 d x d ( x 2 + 1 ) = d u d u 3/2 ( d x d x 2 + d x d 1 ) = 3 2 x 2 + 1 ( 2 x + 0 ) = 3 x x 2 + 1 ( 6 ) =\frac 3 2 \sqrt{x^2 +1}(2x+0)=3x\sqrt{x^2 +1}\qquad (6) = 2 3 x 2 + 1 ( 2 x + 0 ) = 3 x x 2 + 1 ( 6 ) substitute (5), (6) into (1)
f ′ ( x ) = ( x 2 + 1 ) 3 / 2 ( x 2 − 1 + x ( x + 1 ) x 2 − 1 ) − 3 x ( x + 1 ) x 2 − 1 x 2 + 1 ( x 2 + 1 ) 3 f'(x)=\frac{(x^2+1)^{3/2}(\sqrt{x^2 -1}+\frac{x(x+1)}{\sqrt{x^2 -1}})-3x(x+1)\sqrt{x^2 -1}\sqrt{x^2 +1}}{(x^2+1)^3} f ′ ( x ) = ( x 2 + 1 ) 3 ( x 2 + 1 ) 3/2 ( x 2 − 1 + x 2 − 1 x ( x + 1 ) ) − 3 x ( x + 1 ) x 2 − 1 x 2 + 1 = x 2 − 1 + x ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 3 / 2 − 3 x ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 5 / 2 =\frac{\sqrt{x^2 -1}+\frac{x(x+1)}{\sqrt{x^2 -1}}}{(x^2+1)^{3/2}}-\frac{3x(x+1)\sqrt{x^2 -1}}{(x^2+1)^{5/2}} = ( x 2 + 1 ) 3/2 x 2 − 1 + x 2 − 1 x ( x + 1 ) − ( x 2 + 1 ) 5/2 3 x ( x + 1 ) x 2 − 1 = x 2 − 1 ( x 2 + 1 ) 3 / 2 + x ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 3 / 2 − 3 x ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 5 / 2 =\frac{\sqrt{x^2 -1}}{(x^2+1)^{3/2}}+\frac{x(x+1)}{\sqrt{x^2 -1}(x^2+1)^{3/2}}-\frac{3x(x+1)\sqrt{x^2 -1}}{(x^2+1)^{5/2}} = ( x 2 + 1 ) 3/2 x 2 − 1 + x 2 − 1 ( x 2 + 1 ) 3/2 x ( x + 1 ) − ( x 2 + 1 ) 5/2 3 x ( x + 1 ) x 2 − 1 Answer: f ′ ( x ) = x 2 − 1 ( x 2 + 1 ) 3 / 2 + x ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 3 / 2 − 3 x ( x + 1 ) x 2 − 1 ( x 2 + 1 ) 5 / 2 f'(x)=\frac{\sqrt{x^2 -1}}{(x^2+1)^{3/2}}+\frac{x(x+1)}{\sqrt{x^2 -1}(x^2+1)^{3/2}}-\frac{3x(x+1)\sqrt{x^2 -1}}{(x^2+1)^{5/2}} f ′ ( x ) = ( x 2 + 1 ) 3/2 x 2 − 1 + x 2 − 1 ( x 2 + 1 ) 3/2 x ( x + 1 ) − ( x 2 + 1 ) 5/2 3 x ( x + 1 ) x 2 − 1
Comments