- Solution: "f(x)=e^x (1+ln(x))"
By the Product Rule, we have
"f'(x)=\\frac{d}{dx}(e^x(1+ln(x)))= (1+ln(x))\\frac{d}{dx}e^x""+e^x \\frac{d}{dx}(1+ln(x))=\\{the\\space Sum \\space Rule\\}""=(1+ln(x))\\frac{d}{dx}e^x+e^x (\\frac{d}{dx}1+\\frac{d}{dx}ln(x))""=(1+ln(x))e^x+e^x (0+\\frac{1}{x})=e^x(1+ln(x)+\\frac{1}{x})" Answer: "f'(x)=e^x (1+ln(x)+\\frac{1}{x})"
- Solution: "f(x)=x^3e^{1\/x}"
By the Product Rule, we have
"f'(x)=\\frac{d}{dx}(x^3e^{1\/x} )=e^{1\/x}\\frac{d}{dx}x^3+x^3 \\frac{d}{dx}e^{1\/x}" By the Chain Rule: let u=1/x
"f'(x)=e^{1\/x}\\frac{d}{dx}x^3+x^3 \\frac{d}{du}e^u\\frac{d}{dx}(1\/x)""=e^{1\/x}3x^2+x^3 e^{1\/x}(-1\/x^2)=xe^{1\/x}(3x-1)" Answer: "f'(x)=xe^{1\/x}(3x-1)"
- Solution: "f(x)=\\frac{(x+1)\\sqrt{x^2 -1}}{(x^2+1)^{3\/2}}"
By the Quotient Rule, we have
"f'(x)=\\frac{d}{dx}\\Big(\\frac{(x+1)\\sqrt{x^2 -1}}{(x^2+1)^{3\/2}} \\Big)""=\\frac{(x^2+1)^{3\/2}\\frac{d}{dx}((x+1)\\sqrt{x^2 -1})-(x+1)\\sqrt{x^2 -1}\\frac{d}{dx}(x^2+1)^{3\/2}}{((x^2+1)^{3\/2})^2} \\space (1)" By the Product Rule
"\\frac{d}{dx}((x+1)\\sqrt{x^2 -1})=\\sqrt{x^2 -1}\\frac{d}{dx}(x+1)""+(x+1)\\frac{d}{dx}\\sqrt{x^2 -1} \\qquad (2)" By the Sum Rule
"\\frac{d}{dx}(x+1)=\\frac{d}{dx}x+\\frac{d}{dx}1=1+0=1 \\qquad (3)" By the Chain Rule: let "u=x^2-1"
"\\frac{d}{dx}\\sqrt{x^2 -1}=\\frac{d}{du}\\sqrt{u}\\frac{d}{dx}(x^2 -1)=\\{the\\space Difference \\space Rule\\}""=\\frac{d}{du}(\\sqrt{u})\\Big(\\frac{d}{dx}x^2 -\\frac{d}{dx}1\\Big)=\\frac{1}{2\\sqrt{x^2 -1}}(2x-0)""=\\frac{x}{\\sqrt{x^2 -1}}\\qquad(4)"substitute (3), (4) into (2)
"\\frac{d}{dx}((x+1)\\sqrt{x^2 -1})=\\sqrt{x^2 -1}+\\frac{x(x+1)}{\\sqrt{x^2 -1}}\\qquad (5)" By the Chain Rule: let "u=x^2+1"
"\\frac{d}{dx}(x^2+1)^{3\/2}=\\frac{du^{3\/2}}{du}\\frac{d}{dx}(x^2+1)=\\frac{du^{3\/2}}{du}(\\frac{d}{dx}x^2+\\frac{d}{dx}1)""=\\frac 3 2 \\sqrt{x^2 +1}(2x+0)=3x\\sqrt{x^2 +1}\\qquad (6)" substitute (5), (6) into (1)
"f'(x)=\\frac{(x^2+1)^{3\/2}(\\sqrt{x^2 -1}+\\frac{x(x+1)}{\\sqrt{x^2 -1}})-3x(x+1)\\sqrt{x^2 -1}\\sqrt{x^2 +1}}{(x^2+1)^3}""=\\frac{\\sqrt{x^2 -1}+\\frac{x(x+1)}{\\sqrt{x^2 -1}}}{(x^2+1)^{3\/2}}-\\frac{3x(x+1)\\sqrt{x^2 -1}}{(x^2+1)^{5\/2}}""=\\frac{\\sqrt{x^2 -1}}{(x^2+1)^{3\/2}}+\\frac{x(x+1)}{\\sqrt{x^2 -1}(x^2+1)^{3\/2}}-\\frac{3x(x+1)\\sqrt{x^2 -1}}{(x^2+1)^{5\/2}}" Answer: "f'(x)=\\frac{\\sqrt{x^2 -1}}{(x^2+1)^{3\/2}}+\\frac{x(x+1)}{\\sqrt{x^2 -1}(x^2+1)^{3\/2}}-\\frac{3x(x+1)\\sqrt{x^2 -1}}{(x^2+1)^{5\/2}}"
Comments
Leave a comment