Question #223106

Find f'(x) iff(x) = ex(1+Inx)

f(x) = x3e1/x

f(x) = √[x2-1](x+1) / (x2+1)3/2

1
Expert's answer
2021-09-09T14:29:28-0400
  • Solution: f(x)=ex(1+ln(x))f(x)=e^x (1+ln(x))

By the Product Rule, we have


f(x)=ddx(ex(1+ln(x)))=(1+ln(x))ddxexf'(x)=\frac{d}{dx}(e^x(1+ln(x)))= (1+ln(x))\frac{d}{dx}e^x+exddx(1+ln(x))={the Sum Rule}+e^x \frac{d}{dx}(1+ln(x))=\{the\space Sum \space Rule\}=(1+ln(x))ddxex+ex(ddx1+ddxln(x))=(1+ln(x))\frac{d}{dx}e^x+e^x (\frac{d}{dx}1+\frac{d}{dx}ln(x))=(1+ln(x))ex+ex(0+1x)=ex(1+ln(x)+1x)=(1+ln(x))e^x+e^x (0+\frac{1}{x})=e^x(1+ln(x)+\frac{1}{x})

Answer: f(x)=ex(1+ln(x)+1x)f'(x)=e^x (1+ln(x)+\frac{1}{x})


  • Solution: f(x)=x3e1/xf(x)=x^3e^{1/x}

By the Product Rule, we have


f(x)=ddx(x3e1/x)=e1/xddxx3+x3ddxe1/xf'(x)=\frac{d}{dx}(x^3e^{1/x} )=e^{1/x}\frac{d}{dx}x^3+x^3 \frac{d}{dx}e^{1/x}

By the Chain Rule: let u=1/x


f(x)=e1/xddxx3+x3ddueuddx(1/x)f'(x)=e^{1/x}\frac{d}{dx}x^3+x^3 \frac{d}{du}e^u\frac{d}{dx}(1/x)=e1/x3x2+x3e1/x(1/x2)=xe1/x(3x1)=e^{1/x}3x^2+x^3 e^{1/x}(-1/x^2)=xe^{1/x}(3x-1)

Answer: f(x)=xe1/x(3x1)f'(x)=xe^{1/x}(3x-1)


  • Solution: f(x)=(x+1)x21(x2+1)3/2f(x)=\frac{(x+1)\sqrt{x^2 -1}}{(x^2+1)^{3/2}}

By the Quotient Rule, we have


f(x)=ddx((x+1)x21(x2+1)3/2)f'(x)=\frac{d}{dx}\Big(\frac{(x+1)\sqrt{x^2 -1}}{(x^2+1)^{3/2}} \Big)=(x2+1)3/2ddx((x+1)x21)(x+1)x21ddx(x2+1)3/2((x2+1)3/2)2 (1)=\frac{(x^2+1)^{3/2}\frac{d}{dx}((x+1)\sqrt{x^2 -1})-(x+1)\sqrt{x^2 -1}\frac{d}{dx}(x^2+1)^{3/2}}{((x^2+1)^{3/2})^2} \space (1)

By the Product Rule


ddx((x+1)x21)=x21ddx(x+1)\frac{d}{dx}((x+1)\sqrt{x^2 -1})=\sqrt{x^2 -1}\frac{d}{dx}(x+1)+(x+1)ddxx21(2)+(x+1)\frac{d}{dx}\sqrt{x^2 -1} \qquad (2)

By the Sum Rule


ddx(x+1)=ddxx+ddx1=1+0=1(3)\frac{d}{dx}(x+1)=\frac{d}{dx}x+\frac{d}{dx}1=1+0=1 \qquad (3)

By the Chain Rule: let u=x21u=x^2-1


ddxx21=dduuddx(x21)={the Difference Rule}\frac{d}{dx}\sqrt{x^2 -1}=\frac{d}{du}\sqrt{u}\frac{d}{dx}(x^2 -1)=\{the\space Difference \space Rule\}=ddu(u)(ddxx2ddx1)=12x21(2x0)=\frac{d}{du}(\sqrt{u})\Big(\frac{d}{dx}x^2 -\frac{d}{dx}1\Big)=\frac{1}{2\sqrt{x^2 -1}}(2x-0)=xx21(4)=\frac{x}{\sqrt{x^2 -1}}\qquad(4)

substitute (3), (4) into (2)


ddx((x+1)x21)=x21+x(x+1)x21(5)\frac{d}{dx}((x+1)\sqrt{x^2 -1})=\sqrt{x^2 -1}+\frac{x(x+1)}{\sqrt{x^2 -1}}\qquad (5)

By the Chain Rule: let u=x2+1u=x^2+1

ddx(x2+1)3/2=du3/2duddx(x2+1)=du3/2du(ddxx2+ddx1)\frac{d}{dx}(x^2+1)^{3/2}=\frac{du^{3/2}}{du}\frac{d}{dx}(x^2+1)=\frac{du^{3/2}}{du}(\frac{d}{dx}x^2+\frac{d}{dx}1)=32x2+1(2x+0)=3xx2+1(6)=\frac 3 2 \sqrt{x^2 +1}(2x+0)=3x\sqrt{x^2 +1}\qquad (6)

substitute (5), (6) into (1)


f(x)=(x2+1)3/2(x21+x(x+1)x21)3x(x+1)x21x2+1(x2+1)3f'(x)=\frac{(x^2+1)^{3/2}(\sqrt{x^2 -1}+\frac{x(x+1)}{\sqrt{x^2 -1}})-3x(x+1)\sqrt{x^2 -1}\sqrt{x^2 +1}}{(x^2+1)^3}=x21+x(x+1)x21(x2+1)3/23x(x+1)x21(x2+1)5/2=\frac{\sqrt{x^2 -1}+\frac{x(x+1)}{\sqrt{x^2 -1}}}{(x^2+1)^{3/2}}-\frac{3x(x+1)\sqrt{x^2 -1}}{(x^2+1)^{5/2}}=x21(x2+1)3/2+x(x+1)x21(x2+1)3/23x(x+1)x21(x2+1)5/2=\frac{\sqrt{x^2 -1}}{(x^2+1)^{3/2}}+\frac{x(x+1)}{\sqrt{x^2 -1}(x^2+1)^{3/2}}-\frac{3x(x+1)\sqrt{x^2 -1}}{(x^2+1)^{5/2}}

Answer: f(x)=x21(x2+1)3/2+x(x+1)x21(x2+1)3/23x(x+1)x21(x2+1)5/2f'(x)=\frac{\sqrt{x^2 -1}}{(x^2+1)^{3/2}}+\frac{x(x+1)}{\sqrt{x^2 -1}(x^2+1)^{3/2}}-\frac{3x(x+1)\sqrt{x^2 -1}}{(x^2+1)^{5/2}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS