Question #223105

Find f'(x) if

f(x)= √[In(e2x + e-2x)]

f(x) = e-2x sin2x



1
Expert's answer
2021-09-09T07:54:54-0400

(1) Given, f(x)=ln(e2x+e2x)f(x)= \sqrt{ln(e^{2x}+e^{-2x})}


Differentiating with respect to x,

f=dfdx=12ln(e2x+e2x)(2e2x2e2x)(e2x+e2x)=(e2xe2x)(e2x+e2x)ln(e2x+e2x)f'=\frac{df}{dx}=\frac{1}{2\sqrt{ln(e^{2x}+e^{-2x})}}\frac{(2e^{2x}-2e^{-2x})}{(e^{2x}+e^{-2x})} = \frac{(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})\sqrt{ln(e^{2x}+e^{-2x})}}



(2) Given, f(x)=e2xsin2xf(x) = e^{-2x} sin2x


Differentiating both sides with respect to x,


f(x)=dfdx=2e2xcos2x2e2xsin2x=2[e2xcos2xe2xsin2x]f'(x) = \frac{df}{dx}=2e^{-2x}cos2x -2e^{-2x}sin2x = 2[e^{-2x}cos2x-e^{-2x}sin2x]





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS