(1) Given, f ( x ) = l n ( e 2 x + e − 2 x ) f(x)= \sqrt{ln(e^{2x}+e^{-2x})} f ( x ) = l n ( e 2 x + e − 2 x )
Differentiating with respect to x,
f ′ = d f d x = 1 2 l n ( e 2 x + e − 2 x ) ( 2 e 2 x − 2 e − 2 x ) ( e 2 x + e − 2 x ) = ( e 2 x − e − 2 x ) ( e 2 x + e − 2 x ) l n ( e 2 x + e − 2 x ) f'=\frac{df}{dx}=\frac{1}{2\sqrt{ln(e^{2x}+e^{-2x})}}\frac{(2e^{2x}-2e^{-2x})}{(e^{2x}+e^{-2x})} = \frac{(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})\sqrt{ln(e^{2x}+e^{-2x})}} f ′ = d x df = 2 l n ( e 2 x + e − 2 x ) 1 ( e 2 x + e − 2 x ) ( 2 e 2 x − 2 e − 2 x ) = ( e 2 x + e − 2 x ) l n ( e 2 x + e − 2 x ) ( e 2 x − e − 2 x )
(2) Given, f ( x ) = e − 2 x s i n 2 x f(x) = e^{-2x} sin2x f ( x ) = e − 2 x s in 2 x
Differentiating both sides with respect to x,
f ′ ( x ) = d f d x = 2 e − 2 x c o s 2 x − 2 e − 2 x s i n 2 x = 2 [ e − 2 x c o s 2 x − e − 2 x s i n 2 x ] f'(x) = \frac{df}{dx}=2e^{-2x}cos2x -2e^{-2x}sin2x = 2[e^{-2x}cos2x-e^{-2x}sin2x] f ′ ( x ) = d x df = 2 e − 2 x cos 2 x − 2 e − 2 x s in 2 x = 2 [ e − 2 x cos 2 x − e − 2 x s in 2 x ]
Comments