Find f'(x) if
f(x)= √[In(e2x + e-2x)]
f(x) = e-2x sin2x
(1) Given, "f(x)= \\sqrt{ln(e^{2x}+e^{-2x})}"
Differentiating with respect to x,
"f'=\\frac{df}{dx}=\\frac{1}{2\\sqrt{ln(e^{2x}+e^{-2x})}}\\frac{(2e^{2x}-2e^{-2x})}{(e^{2x}+e^{-2x})} = \\frac{(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})\\sqrt{ln(e^{2x}+e^{-2x})}}"
(2) Given, "f(x) = e^{-2x} sin2x"
Differentiating both sides with respect to x,
"f'(x) = \\frac{df}{dx}=2e^{-2x}cos2x -2e^{-2x}sin2x = 2[e^{-2x}cos2x-e^{-2x}sin2x]"
Comments
Leave a comment