(1) Given, f(x)=ln(e2x+e−2x)
Differentiating with respect to x,
f′=dxdf=2ln(e2x+e−2x)1(e2x+e−2x)(2e2x−2e−2x)=(e2x+e−2x)ln(e2x+e−2x)(e2x−e−2x)
(2) Given, f(x)=e−2xsin2x
Differentiating both sides with respect to x,
f′(x)=dxdf=2e−2xcos2x−2e−2xsin2x=2[e−2xcos2x−e−2xsin2x]
Comments