Find f'(x) if
f(x)= √[In(e2x + e-2x)]
f(x) = e-2x sin2x
(1) Given, f(x)=ln(e2x+e−2x)f(x)= \sqrt{ln(e^{2x}+e^{-2x})}f(x)=ln(e2x+e−2x)
Differentiating with respect to x,
f′=dfdx=12ln(e2x+e−2x)(2e2x−2e−2x)(e2x+e−2x)=(e2x−e−2x)(e2x+e−2x)ln(e2x+e−2x)f'=\frac{df}{dx}=\frac{1}{2\sqrt{ln(e^{2x}+e^{-2x})}}\frac{(2e^{2x}-2e^{-2x})}{(e^{2x}+e^{-2x})} = \frac{(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})\sqrt{ln(e^{2x}+e^{-2x})}}f′=dxdf=2ln(e2x+e−2x)1(e2x+e−2x)(2e2x−2e−2x)=(e2x+e−2x)ln(e2x+e−2x)(e2x−e−2x)
(2) Given, f(x)=e−2xsin2xf(x) = e^{-2x} sin2xf(x)=e−2xsin2x
Differentiating both sides with respect to x,
f′(x)=dfdx=2e−2xcos2x−2e−2xsin2x=2[e−2xcos2x−e−2xsin2x]f'(x) = \frac{df}{dx}=2e^{-2x}cos2x -2e^{-2x}sin2x = 2[e^{-2x}cos2x-e^{-2x}sin2x]f′(x)=dxdf=2e−2xcos2x−2e−2xsin2x=2[e−2xcos2x−e−2xsin2x]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments