Question #223110

Evaluate the following Integrals

1)  ʃ [2x2 / (x-1)2(x+1)] dx

2)  ʃ [2x3-3x2-x-7 / 2x2-3x-2] dx



1
Expert's answer
2021-09-13T14:36:01-0400

1) Let us expand the integrand into partial fractions:

2x2(x1)2(x+1)=Ax1+B(x1)2+Cx+1=A(x21)+B(x+1)+C(x22x+1)(x1)2(x+1)=x2(A+C)+x(B2C)A+B+C(x1)2(x+1)\frac{{2{x^2}}}{{{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} = \frac{A}{{x - 1}} + \frac{B}{{{{\left( {x - 1} \right)}^2}}} + \frac{C}{{x + 1}} = \frac{{A({x^2} - 1) + B(x + 1) + C\left( {{x^2} - 2x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} = \frac{{{x^2}\left( {A + C} \right) + x\left( {B - 2C} \right) - A + B + C}}{{{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}


{A+C=2B2C=0A+B+C=0A=32,B=1,C=12\left\{ \begin{array}{l} A + C = 2\\ B - 2C = 0\\ - A + B + C = 0 \end{array} \right. \Rightarrow A = \frac{3}{2},\,\,B = 1,\,\,C = \frac{1}{2}

Then

2x2(x1)2(x+1)dx=32dxx1+dx(x1)2+12dxx+1=32lnx11x1_12lnx+1+C\int {\frac{{2{x^2}}}{{{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}dx} = \frac{3}{2}\int {\frac{{dx}}{{x - 1}} + \int {\frac{{dx}}{{{{\left( {x - 1} \right)}^2}}}} } + \frac{1}{2}\int {\frac{{dx}}{{x + 1}}} = \frac{3}{2}\ln |x - 1| - \frac{1}{{x - 1}}\_\frac{1}{2}\ln |x + 1| + C

Answer: 32lnx11x1_12lnx+1+C\frac{3}{2}\ln |x - 1| - \frac{1}{{x - 1}}\_\frac{1}{2}\ln |x + 1| + C


2)

2x33x2x72x23x2dx=2x33x22x+x72x23x2dx=2x33x22x2x23x2dx+x72x23x2dx=x(2x23x2)2x23x2dx+144x282x23x2dx=xdx+144x3252x23x2dx=xdx+144x32x23x2dx254dx2x23x2=xdx+14d(2x23x2)2x23x2258dxx232x1=xdx+14d(2x23x2)2x23x2258dxx232x+9162516=xdx+14d(2x23x2)2x23x2+258dx(54)2(x34)2=x22+14ln2x23x2+2581254ln54+x3454(x34)+C=x22+14ln2x23x2+54ln12+x2x+C\int {\frac{{2{x^3} - 3{x^2} - x - 7}}{{2{x^2} - 3x - 2}}dx = } \int {\frac{{2{x^3} - 3{x^2} - 2x + x - 7}}{{2{x^2} - 3x - 2}}dx = } \int {\frac{{2{x^3} - 3{x^2} - 2x}}{{2{x^2} - 3x - 2}}dx + \int {\frac{{x - 7}}{{2{x^2} - 3x - 2}}} } dx = \int {\frac{{x\left( {2{x^2} - 3x - 2} \right)}}{{2{x^2} - 3x - 2}}dx + \frac{1}{4}\int {\frac{{4x - 28}}{{2{x^2} - 3x - 2}}} } dx = \int {xdx + \frac{1}{4}\int {\frac{{4x - 3 - 25}}{{2{x^2} - 3x - 2}}} dx} = \int {xdx + \frac{1}{4}\int {\frac{{4x - 3}}{{2{x^2} - 3x - 2}}} dx} - \frac{{25}}{4}\int {\frac{{dx}}{{2{x^2} - 3x - 2}}} = \int {xdx + \frac{1}{4}\int {\frac{{d\left( {2{x^2} - 3x - 2} \right)}}{{2{x^2} - 3x - 2}}} } - \frac{{25}}{8}\int {\frac{{dx}}{{{x^2} - \frac{3}{2}x - 1}}} = \int {xdx + \frac{1}{4}\int {\frac{{d\left( {2{x^2} - 3x - 2} \right)}}{{2{x^2} - 3x - 2}}} } - \frac{{25}}{8}\int {\frac{{dx}}{{{x^2} - \frac{3}{2}x + \frac{9}{{16}} - \frac{{25}}{{16}}}} = } \int {xdx + \frac{1}{4}\int {\frac{{d\left( {2{x^2} - 3x - 2} \right)}}{{2{x^2} - 3x - 2}}} } + \frac{{25}}{8}\int {\frac{{dx}}{{{{\left( {\frac{5}{4}} \right)}^2} - {{\left( {x - \frac{3}{4}} \right)}^2}}} = } \frac{{{x^2}}}{2} + \frac{1}{4}\ln \left| {2{x^2} - 3x - 2} \right| + \frac{{25}}{8} \cdot \frac{1}{{2 \cdot \frac{5}{4}}}\ln \left| {\frac{{\frac{5}{4} + x - \frac{3}{4}}}{{\frac{5}{4} - \left( {x - \frac{3}{4}} \right)}}} \right| + C = \frac{{{x^2}}}{2} + \frac{1}{4}\ln \left| {2{x^2} - 3x - 2} \right| + \frac{5}{4}\ln \left| {\frac{{\frac{1}{2} + x}}{{2 - x}}} \right| + C

Answer" x22+14ln2x23x2+54ln12+x2x+C\frac{{{x^2}}}{2} + \frac{1}{4}\ln \left| {2{x^2} - 3x - 2} \right| + \frac{5}{4}\ln \left| {\frac{{\frac{1}{2} + x}}{{2 - x}}} \right| + C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS