1) Let us expand the integrand into partial fractions:
(x−1)2(x+1)2x2=x−1A+(x−1)2B+x+1C=(x−1)2(x+1)A(x2−1)+B(x+1)+C(x2−2x+1)=(x−1)2(x+1)x2(A+C)+x(B−2C)−A+B+C
⎩⎨⎧A+C=2B−2C=0−A+B+C=0⇒A=23,B=1,C=21
Then
∫(x−1)2(x+1)2x2dx=23∫x−1dx+∫(x−1)2dx+21∫x+1dx=23ln∣x−1∣−x−11_21ln∣x+1∣+C
Answer: 23ln∣x−1∣−x−11_21ln∣x+1∣+C
2)
∫2x2−3x−22x3−3x2−x−7dx=∫2x2−3x−22x3−3x2−2x+x−7dx=∫2x2−3x−22x3−3x2−2xdx+∫2x2−3x−2x−7dx=∫2x2−3x−2x(2x2−3x−2)dx+41∫2x2−3x−24x−28dx=∫xdx+41∫2x2−3x−24x−3−25dx=∫xdx+41∫2x2−3x−24x−3dx−425∫2x2−3x−2dx=∫xdx+41∫2x2−3x−2d(2x2−3x−2)−825∫x2−23x−1dx=∫xdx+41∫2x2−3x−2d(2x2−3x−2)−825∫x2−23x+169−1625dx=∫xdx+41∫2x2−3x−2d(2x2−3x−2)+825∫(45)2−(x−43)2dx=2x2+41ln∣∣2x2−3x−2∣∣+825⋅2⋅451ln∣∣45−(x−43)45+x−43∣∣+C=2x2+41ln∣∣2x2−3x−2∣∣+45ln∣∣2−x21+x∣∣+C
Answer" 2x2+41ln∣∣2x2−3x−2∣∣+45ln∣∣2−x21+x∣∣+C
Comments