Study the following functions
3) f(x) = (x3 / x-1 )s
4) f(x) = x / cube root of (x2-1)
Number 3
"\\mathrm{Domain\\:of\\:}\\:\\frac{x^3}{x-1}\\::\\quad \\begin{bmatrix}\\mathrm{Solution:}\\:&\\:x<1\\quad \\mathrm{or}\\quad \\:x>1\\:\\\\ \\:\\mathrm{Interval\\:Notation:}&\\:\\left(-\\infty \\:,\\:1\\right)\\cup \\left(1,\\:\\infty \\:\\right)\\end{bmatrix}\\\\\n\\mathrm{Range\\:of\\:}\\frac{x^3}{x-1}:\\quad \\begin{bmatrix}\\mathrm{Solution:}\\:&\\:-\\infty \\:<f\\left(x\\right)<\\infty \\\\ \\:\\mathrm{Interval\\:Notation:}&\\:\\left(-\\infty \\:,\\:\\infty \\:\\right)\\end{bmatrix}\\\\\n\\mathrm{Axis\\:interception\\:points\\:of}\\:\\frac{x^3}{x-1}:\\quad \\mathrm{X\\:Intercepts}:\\:\\left(0,\\:0\\right),\\:\\mathrm{Y\\:Intercepts}:\\:\\left(0,\\:0\\right)\\\\\n\\mathrm{Asymptotes\\:of}\\:\\frac{x^3}{x-1}:\\quad \\mathrm{Vertical}:\\:x=1\\\\\n\\mathrm{Extreme\\:Points\\:of}\\:\\frac{x^3}{x-1}:\\quad \\mathrm{Saddle}\\left(0,\\:0\\right),\\:\\mathrm{Minimum}\\left(\\frac{3}{2},\\:\\frac{27}{4}\\right)"
Number 4
"\\mathrm{Domain\\:of\\:}\\:\\frac{x}{\\sqrt[3]{x^2-1}}\\::\\quad \\begin{bmatrix}\\mathrm{Solution:}\\:&\\:x<-1\\quad \\mathrm{or}\\quad \\:-1<x<1\\quad \\mathrm{or}\\quad \\:x>1\\:\\\\ \\:\\mathrm{Interval\\:Notation:}&\\:\\left(-\\infty \\:,\\:-1\\right)\\cup \\left(-1,\\:1\\right)\\cup \\left(1,\\:\\infty \\:\\right)\\end{bmatrix}\\\\\n\\mathrm{Range\\:of\\:}\\frac{x}{\\sqrt[3]{x^2-1}}:\\quad \\begin{bmatrix}\\mathrm{Solution:}\\:&\\:f\\left(x\\right)>\\sqrt[3]{-1}\\cdot \\infty \\\\ \\:\\mathrm{Interval\\:Notation:}&\\:\\left(\\sqrt[3]{-1}\\cdot \\infty \\:,\\:\\infty \\:\\right)\\end{bmatrix}\\\\\n\\mathrm{Axis\\:interception\\:points\\:of}\\:\\frac{x}{\\sqrt[3]{x^2-1}}:\\quad \\mathrm{X\\:Intercepts}:\\:\\left(0,\\:0\\right),\\:\\mathrm{Y\\:Intercepts}:\\:\\left(0,\\:0\\right)\\\\\n\\mathrm{Asymptotes\\:of}\\:\\frac{x}{\\sqrt[3]{x^2-1}}:\\quad \\mathrm{Vertical}:\\:x=-1,\\:x=1\\\\\n\\mathrm{Extreme\\:Points\\:of}\\:\\frac{x}{\\sqrt[3]{x^2-1}}:\\quad \\mathrm{Maximum}\\left(-\\sqrt{3},\\:-\\frac{\\sqrt{3}}{\\sqrt[3]{2}}\\right),\\:\\mathrm{Minimum}\\left(\\sqrt{3},\\:\\frac{\\sqrt{3}}{\\sqrt[3]{2}}\\right)"
Comments
Leave a comment