Question #223133

Find the area of the region bounded by the curves y= -x2/3 + 2/3x + 5 and if -x+5.

Find also the volume when the area is rotated completely about the x-axis.


1
Expert's answer
2021-10-29T03:01:48-0400

Taking curve as Y1=13x2+Y_{1}=\frac{-1}{3}x^2+ 23x+5\frac{2}{3}x+5

and line as Y2=x+5Y_{2}=-x+5

They meet at (0,5) and (5,0)




Area between the graphs

A=05(13x2+23x+5)dx05(x+5)dxA=\int_{0}^5(\frac{-1}{3}x^2+\frac{2}{3}x+5)dx-\int_{0}^5(-x+5)dx

19x3+23x2+5x05|-\frac{1}{9}x^3+\frac{2}{3}x^2+5x|_0^5 x22+5x05-|\frac{-x^2}{2}+5x|_0^5


=(1259+503+25)(12.5+25)=(\frac{-125}{9}+\frac{50}{3}+25)-(-12.5+25)

=19.44 - 12.5

=6.94


Volume V=π05(13x2+23x+5)2dxπ05(x+5)2dxV=\pi\int_{0}^5(\frac{-1}{3}x^2+\frac{2}{3}x+5)^2dx-\pi\int_{0}^5(-x+5)^2dx


05(x23+23x+5)2\int_0^5(\frac{-x^2}{3}+\frac{2}{3}x+5)^2 dx


=05(\int_0^5( x494x39269x2+20x3+25\frac{x^4}{9}-\frac{4x^3}{9}-\frac{26}9x^2+\frac{20x}{3}+25)dx


=x545x4926x327+10x23+25x05|\frac{x^5}{45}-\frac{x^4}{9}-\frac{26x^3}{27}+\frac{10x^2}{3}+25x|_0^5


=87.96


05(x+5)2dx\int_0^5(-x+5)^2dx


=05(x210x+25)dx=\int_0^5(x^2-10x+25)dx


=x335x2+25x)05=|\frac{x^3}{3}-5x^2+25x)|_0^5


=41.67


π(87.9641.67)=46.29π\pi(87.96-41.67) =46.29\pi

=145.42



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS