Find the area of the region bounded by the curves y= -x2/3 + 2/3x + 5 and if -x+5.
Find also the volume when the area is rotated completely about the x-axis.
Taking curve as "Y_{1}=\\frac{-1}{3}x^2+" "\\frac{2}{3}x+5"
and line as "Y_{2}=-x+5"
They meet at (0,5) and (5,0)
Area between the graphs
"A=\\int_{0}^5(\\frac{-1}{3}x^2+\\frac{2}{3}x+5)dx-\\int_{0}^5(-x+5)dx"
"|-\\frac{1}{9}x^3+\\frac{2}{3}x^2+5x|_0^5" "-|\\frac{-x^2}{2}+5x|_0^5"
"=(\\frac{-125}{9}+\\frac{50}{3}+25)-(-12.5+25)"
=19.44 - 12.5
=6.94
Volume "V=\\pi\\int_{0}^5(\\frac{-1}{3}x^2+\\frac{2}{3}x+5)^2dx-\\pi\\int_{0}^5(-x+5)^2dx"
"\\int_0^5(\\frac{-x^2}{3}+\\frac{2}{3}x+5)^2" dx
="\\int_0^5(" "\\frac{x^4}{9}-\\frac{4x^3}{9}-\\frac{26}9x^2+\\frac{20x}{3}+25")dx
="|\\frac{x^5}{45}-\\frac{x^4}{9}-\\frac{26x^3}{27}+\\frac{10x^2}{3}+25x|_0^5"
=87.96
"\\int_0^5(-x+5)^2dx"
"=\\int_0^5(x^2-10x+25)dx"
"=|\\frac{x^3}{3}-5x^2+25x)|_0^5"
=41.67
"\\pi(87.96-41.67)\n=46.29\\pi"
=145.42
Comments
Leave a comment