A.
"Profit=Revenue-Cost""P(Q)=R(Q)-TC(Q)"
"=10Q-0.001Q^2"
"P(Q)=10Q-0.001Q^2-(5000+2Q)"
"=8Q-0.001Q^2-5000"
B.
"10Q-0.001Q^2\\geq0"
"0\\leq Q\\leq 10000"
"P'(Q)=(8Q-0.001Q^2-5000)'"
"=8-0.002Q"
Find critical number(s)
If "0\\leq Q\\leq4000, P'(Q)>0, P(Q)" increases.
If "4000\\leq Q\\leq10000, P'(Q)<0, P(Q)" decreases.
The function "P(Q)" has a local maximum at "Q=4000."
Since the function "P(Q)" has the only extremum on "[0, 10000]," then the function "P(Q)" has the absolute maximum at "Q=4000."
"P(4000)=\\$11000"
"p(4000)=10-0.001(4000)"
"p(4000)=\\$6"
Comments
Leave a comment