Find the general solution given y1=x2 is a particular solution of x^2y"-3xy'+4y=0.
Let "y_2(x)" be a second solution of "x^2y''-3xy'+4y=0."
"y_2=y_1\\int\\dfrac{e^{-\\int P(x)dx}}{y_1^2}dx"
"y_2=x^2\\int\\dfrac{e^{\\int {3 \\over x}dx}}{x^4}dx=x^2\\int\\dfrac{x^3}{x^4}dx=x^2\\ln x"
The general solution on "(0, \\infin)" is given by
"y=c_1x^2+c_2x^2\\ln x"
Comments
Leave a comment