Question #218075

Find the general solution given y1=x2 is a particular solution of x^2y"-3xy'+4y=0.


1
Expert's answer
2021-07-19T05:48:57-0400

Let y2(x)y_2(x) be  a second solution of x2y3xy+4y=0.x^2y''-3xy'+4y=0.



y3xy+4x2y=0.y''-\dfrac{3}{x}y'+\dfrac{4}{x^2}y=0.

y2=y1eP(x)dxy12dxy_2=y_1\int\dfrac{e^{-\int P(x)dx}}{y_1^2}dx

y2=x2e3xdxx4dx=x2x3x4dx=x2lnxy_2=x^2\int\dfrac{e^{\int {3 \over x}dx}}{x^4}dx=x^2\int\dfrac{x^3}{x^4}dx=x^2\ln x


The general solution on (0,)(0, \infin) is given by


y=c1y1+c2y2y=c_1y_1+c_2y_2

y=c1x2+c2x2lnxy=c_1x^2+c_2x^2\ln x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS