∫(2x2dx+3y2dy)x(t)=at2 ⟹ dx=2atdty(t)=2at ⟹ dy=2adt∫(2x2dx+3y2dy)=∫012(at2)2∗2atdt+3(2at)22adt∫014a3t5dt+∫0112a3t2dt∫014a3t5dt+∫0112a3t2dt23a3+4a314a33∫ (2x^2 dx+ 3y^2dy)\\ x(t)= at^2 \implies dx=2atdt\\ y(t) = 2at\implies dy =2adt\\ ∫ (2x^2 dx+ 3y^2dy)=∫_0^12(at^2)^2*2atdt+3(2at)^22adt\\ ∫_0^14a^3t^5dt+∫_0^112a^3t^2dt\\ ∫_0^14a^3t^5dt+∫_0^112a^3t^2dt\\ \frac{2}{3}a^3+4a^3\\ \frac{14a^3}{3}∫(2x2dx+3y2dy)x(t)=at2⟹dx=2atdty(t)=2at⟹dy=2adt∫(2x2dx+3y2dy)=∫012(at2)2∗2atdt+3(2at)22adt∫014a3t5dt+∫0112a3t2dt∫014a3t5dt+∫0112a3t2dt32a3+4a3314a3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments