Question #217984
Show whether or not the following differential equations are separable: 1.dy/dx=(x+1)/y(-1), 2.dy/dx=(ye^x+y)/(x^2+2),3.dy/dx=t(ln(S^2t))+8t^2
1
Expert's answer
2021-07-19T05:51:37-0400

1

dydx=(x+1)(y1)(y1)dy=(x+1)dx\frac{dy}{dx}=\frac{(x+1)}{(y-1)}\\ (y-1)dy=(x+1)dx\\

Hence it is separable

2.

dydx=(yex+y)(x2+2)dydx=(yexey)(x2+2)dyyey=ex(x2+2)dx\frac{dy}{dx}=\frac{(ye^x+y)}{(x^2+2)}\\ \frac{dy}{dx}=\frac{(ye^xe^y)}{(x^2+2)}\\ \frac{dy}{ye^y}=\frac{e^x}{(x^2+2)}dx\\

Hence it is separable

3.

dydx=t(ln(S2t))+8t2dSdx=t(ln(S2t))+8t2ln(S2t)=2tln(s)dSdx=t(2tln(S))+8t2dSdx=2t2ln(S)+8t2dSdx=2t2[ln(S)+4]dSlnS+4=2t2dt\frac{dy}{dx}=t(\ln(S^{2t}))+8t^2\\ \frac{dS}{dx}=t(\ln(S^{2t}))+8t^2\\ \ln (S^{2t})=2t\ln(s)\\ \frac{dS}{dx}=t(2t\ln(S))+8t^2\\ \frac{dS}{dx}=2t^2\ln(S)+8t^2\\ \frac{dS}{dx}=2t^2[\ln(S)+4]\\ \frac{dS}{\ln S+4}=2t^2 dt

Hence it is separable


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS