Answer:-
We’ll integrate in the order dxdydz.
x=1:1=2y2+2z2−5y2+z2=3We have Q={(y,z):y2+z2≤3} and
∫∫∫EyzdV=∫∫Q(∫2y2+2z2−51yzdx)dA=∫∫Q(1−2y2−2z2+5)yzdA=∫02π∫03(6−2r2)rsinθrcosθrdrdθ=∫02πsin(2θ)[43r4−6r6]30dθ=∫02π49sin(2θ)dθ=−89[cos(2θ)]2π0=0
Comments