Question #217635
Let L be the line with equation y=x-1. Find the minimum distance between L and the point (4,5) by using (a) theorem 10.2.4, (b) the Method of Lagrange.
1
Expert's answer
2021-07-18T11:04:55-0400
d2=(x4)2+(y5)2d^2=(x-4)^2+(y-5)^2

(a) Given y=x1.y=x-1.

Then


d2=f(x)=(x4)2+(x15)2d^2=f(x)=(x-4)^2+(x-1-5)^2

f(x)=2(x4)+2(x6)f'(x)=2(x-4)+2(x-6)

=2(x4+x6)=4(x5)=2(x-4+x-6)=4(x-5)

Find the critical number(s):


f(x)=0=>4(x5)=0=>x=5f'(x)=0=>4(x-5)=0=>x=5

Critical number: 5.5.


f(x)=4>0f''(x)=4>0

Then the function f(x)f(x) has a local minimum at x=4.x=4.

Since the function ff has the only extremum, then the function f(x)f(x) has an absolute minimum at x=4.x=4.


x=5,y=51=4x=5, y=5-1=4

d=(54)2+(45)2=2d=\sqrt{(5-4)^2+(4-5)^2}=\sqrt{2}

(b) Given y=x1.y=x-1.

Then


L(x,y)=(x4)2+(y5)2λ(xy1)L(x,y)=(x-4)^2+(y-5)^2-\lambda(x-y-1)

Lx=2(x4)λ\dfrac{\partial L}{\partial x}=2(x-4)-\lambda

Ly=2(y5)+λ\dfrac{\partial L}{\partial y}=2(y-5)+\lambda

Lλ=x+y+1\dfrac{\partial L}{\partial \lambda}=-x+y+1


Lx=0\dfrac{\partial L}{\partial x}=0

Ly=0\dfrac{\partial L}{\partial y}=0

Lλ=0\dfrac{\partial L}{\partial \lambda}=0




λ=2(x4)\lambda=2(x-4)

y=x1y=x-1

2(x15)+2(x4)=02(x-1-5)+2(x-4)=0


x=5x=5

y=4y=4

λ=2\lambda=2

The minimum distance between L and the point (4,5) is 2.\sqrt{2}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS