Let L be the line with equation y=x-1. Find the minimum distance between L and the point (4,5) by using (a) theorem 10.2.4, (b) the Method of Lagrange.
1
Expert's answer
2021-07-18T11:04:55-0400
d2=(x−4)2+(y−5)2
(a) Given y=x−1.
Then
d2=f(x)=(x−4)2+(x−1−5)2
f′(x)=2(x−4)+2(x−6)
=2(x−4+x−6)=4(x−5)
Find the critical number(s):
f′(x)=0=>4(x−5)=0=>x=5
Critical number: 5.
f′′(x)=4>0
Then the function f(x) has a local minimum at x=4.
Since the function f has the only extremum, then the function f(x) has an absolute minimum at x=4.
x=5,y=5−1=4
d=(5−4)2+(4−5)2=2
(b) Given y=x−1.
Then
L(x,y)=(x−4)2+(y−5)2−λ(x−y−1)
∂x∂L=2(x−4)−λ
∂y∂L=2(y−5)+λ
∂λ∂L=−x+y+1
∂x∂L=0
∂y∂L=0
∂λ∂L=0
λ=2(x−4)
y=x−1
2(x−1−5)+2(x−4)=0
x=5
y=4
λ=2
The minimum distance between L and the point (4,5) is 2.
Comments