∬(y2+3x)dR, where R is the region in the third quadrant between x2+y2=1 and x2+y2=3
We can use the polar coordinates
{x=rcosϕy=rsinϕ
the finction will be f(r,ϕ)=r(r2sin2ϕ+3rcosϕ)
Then
∬(y2+3x)dR=∫13dr∫π23π(r3sin2ϕ+3r2cosϕ)dϕ==∫13dr∫π23π(2r3−2r3cos2ϕ+3r2cosϕ)dϕ==∫13(2r3ϕ−4r3sin2ϕ+3r2sinϕ∣π23π)dr==∫13(2r323π−3r2−2r3π)dr==∫13(4πr3−3r2)dr==(16πr4−r3)∣13==169π−33−(16π−1)=2π+1−33
Comments