Question #217576
Evaluate integration integration y^2+3x dA where R is the region in the third quadrant between x^2+y^2=1 and x^2+y^2=3
1
Expert's answer
2021-08-02T12:03:24-0400

(y2+3x)dR,\iint (y^2+3x) dR, where R is the region in the third quadrant between x2+y2=1x^2+y^2=1 and x2+y2=3x^2+y^2=3


We can use the polar coordinates

{x=rcosϕy=rsinϕ\begin{cases} x = r\cos \phi\\ y = r\sin \phi \end{cases}

the finction will be f(r,ϕ)=r(r2sin2ϕ+3rcosϕ)f(r, \phi) = r(r^2 \sin^2 \phi+3r \cos \phi)


Then

(y2+3x)dR=13drπ3π2(r3sin2ϕ+3r2cosϕ)dϕ==13drπ3π2(r32r3cos2ϕ2+3r2cosϕ)dϕ==13(r3ϕ2r3sin2ϕ4+3r2sinϕπ3π2)dr==13(r323π23r2r32π)dr==13(πr343r2)dr==(πr416r3)13==9π1633(π161)=π2+133\iint (y^2+3x) dR = \int_{1}^{\sqrt 3} dr \int_{\pi}^{\frac{3\pi}{2}} (r^3 \sin^2 \phi+3r^2 \cos \phi)d\phi=\\ =\int_{1}^{\sqrt 3} dr \int_{\pi}^{\frac{3\pi}{2}}(\cfrac{r^3}{2}-\cfrac{r^3\cos 2\phi}{2}+3r^2\cos\phi)d\phi =\\ =\int_{1}^{\sqrt 3} (\cfrac{r^3\phi}{2}-\cfrac{r^3\sin2\phi}{4}+3r^2sin\phi|_{\pi}^{\frac{3\pi}{2}})dr = \\ =\int_{1}^{\sqrt 3}(\cfrac{r^3}{2}\cfrac{3\pi}{2}-3r^2-\cfrac{r^3}{2}\pi)dr =\\ =\int_{1}^{\sqrt 3}(\cfrac{\pi r^3}{4}-3r^2)dr= \\ =(\cfrac{\pi r^4}{16}-r^3)|_{1}^{\sqrt 3} =\\ = \cfrac{9 \pi}{16}-3\sqrt 3 -(\cfrac{\pi}{16}-1) = \cfrac{\pi}{2}+1-3\sqrt 3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS