"\\iint (y^2+3x) dR," where R is the region in the third quadrant between "x^2+y^2=1" and "x^2+y^2=3"
We can use the polar coordinates
"\\begin{cases}\nx = r\\cos \\phi\\\\\ny = r\\sin \\phi\n\\end{cases}"
the finction will be "f(r, \\phi) = r(r^2 \\sin^2 \\phi+3r \\cos \\phi)"
Then
"\\iint (y^2+3x) dR = \\int_{1}^{\\sqrt 3} dr \\int_{\\pi}^{\\frac{3\\pi}{2}} (r^3 \\sin^2 \\phi+3r^2 \\cos \\phi)d\\phi=\\\\\n=\\int_{1}^{\\sqrt 3} dr \\int_{\\pi}^{\\frac{3\\pi}{2}}(\\cfrac{r^3}{2}-\\cfrac{r^3\\cos 2\\phi}{2}+3r^2\\cos\\phi)d\\phi =\\\\\n=\\int_{1}^{\\sqrt 3} (\\cfrac{r^3\\phi}{2}-\\cfrac{r^3\\sin2\\phi}{4}+3r^2sin\\phi|_{\\pi}^{\\frac{3\\pi}{2}})dr = \\\\\n=\\int_{1}^{\\sqrt 3}(\\cfrac{r^3}{2}\\cfrac{3\\pi}{2}-3r^2-\\cfrac{r^3}{2}\\pi)dr =\\\\\n=\\int_{1}^{\\sqrt 3}(\\cfrac{\\pi r^3}{4}-3r^2)dr= \\\\\n=(\\cfrac{\\pi r^4}{16}-r^3)|_{1}^{\\sqrt 3} =\\\\\n= \\cfrac{9 \\pi}{16}-3\\sqrt 3 -(\\cfrac{\\pi}{16}-1) = \\cfrac{\\pi}{2}+1-3\\sqrt 3"
Comments
Leave a comment