Evaluate the definite integral
"\\intop"10 18e3x+1dx (round to an integer).
1. 322
2. 311
3. 932
4. 965
To solve this integral, we have to consider that
"e^{3x+1}=e^u\n\\\\ u=3x+1, u(1)=4, u(0)=1\n\\\\ \\implies du=3dx"
With that information we proceed and find:
"I=\u222b^1_0 18e^{3x+1}dx=6(\u222b^1_0 3e^{3x+1}dx)\n\\\\ \\implies I=6(\u222b^4_1 e^{u}du)=6 \\left( \\Big \\lbrack e^{u}\\Big \\rbrack_1^4 \\right)=6(e^4-e^1)"
"\\implies I\\approxeq 6(54.5981-2.7183)\\approxeq311.2788\\approxeq311"
In conclusion, "\\intop"10 18e3x+1dx (round to an integer) is equal to option 2. 311.
Reference:
Comments
Leave a comment