Question #217126

Question  2

Evaluate the definite integral         


\intop10 18e3x+1dx (round to an integer).


 

1.      322

2.      311

3.      932

4.      965


1
Expert's answer
2021-07-14T18:13:48-0400

To solve this integral, we have to consider that


e3x+1=euu=3x+1,u(1)=4,u(0)=1    du=3dxe^{3x+1}=e^u \\ u=3x+1, u(1)=4, u(0)=1 \\ \implies du=3dx


With that information we proceed and find:


I=0118e3x+1dx=6(013e3x+1dx)    I=6(14eudu)=6([eu]14)=6(e4e1)I=∫^1_0 18e^{3x+1}dx=6(∫^1_0 3e^{3x+1}dx) \\ \implies I=6(∫^4_1 e^{u}du)=6 \left( \Big \lbrack e^{u}\Big \rbrack_1^4 \right)=6(e^4-e^1)


    I6(54.59812.7183)311.2788311\implies I\approxeq 6(54.5981-2.7183)\approxeq311.2788\approxeq311


In conclusion, \intop10 18e3x+1dx (round to an integer) is equal to option 2. 311.


Reference:

  • Varberg, D. E., Purcell, E. J., & Rigdon, S. E. (2007). Calculus with differential equations. Pearson/Prentice Hall.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS