⟹f(z)=u(x,y)+iv(x,y)
logz=lnr+iθ=ln(u(x,y))2+(v(x,y))2+iarctan(v(x,y)/u(x,y))
⟹dxdlog∣f(z)∣=2((u(x,y))2+(v(x,y))2)2uux+2vvx+i1+(v/u)21
⟹dxdlog∣f(z)∣=fx/f
⟹dx2d2log∣f(z)∣=f2fxxf−fx2
⟹dydlog∣f(z)∣=fy/f
⟹dy2d2log∣f(z)∣=f2fyyf−fy2
⟹(dx2d2+dy2d2)log∣f(z)∣=f2fxxf−fx2+f2fyyf−fy2
f(z)=u(x,y)+iv(x,y)
for analytic function:
ux=vy,uy=−vx
uxx=−uyy,vxx=−vyy
then:
(dx2d2+dy2d2)log∣f(z)∣=(u+iv)2f⋅(uxx+ivxx+uyy+ivyy)−((ux+ivx)2+(uy+ivy)2))
uxx+ivxx+uyy+ivyy=uxx−ivyy−uxx+ivyy=0
(ux+ivx)2+(uy+ivy)2=(ux)2+2iuxvx−(vx)2+(uy)2+2iuyvy−(vy)2=
=(vy)2−2ivyuy−(uy)2+(uy)2+2ivyuy−(vy)2=0
So,
(dx2d2+dy2d2)log∣f(z)∣=0
Comments
Leave a comment