Answer to Question #217163 in Calculus for vindhya

Question #217163

if f(z) is an analytical function of z, then prove that ( d^2/dx^2 + d^2/ dy^2) log |f(z)|= 0


1
Expert's answer
2021-10-29T03:00:37-0400

    f(z)=u(x,y)+iv(x,y)\implies f(z)=u(x,y)+iv(x,y)


logz=lnr+iθ=ln(u(x,y))2+(v(x,y))2+iarctan(v(x,y)/u(x,y))logz=lnr+i\theta=ln\sqrt{(u(x,y))^2+(v(x,y))^2}+iarctan(v(x,y)/u(x,y))


    ddxlogf(z)=2uux+2vvx2((u(x,y))2+(v(x,y))2)+i11+(v/u)2\implies \frac{d}{dx}log|f(z)|=\frac{2uu_x+2vv_x}{2((u(x,y))^2+(v(x,y))^2)}+i\frac{1}{1+(v/u)^2}


    ddxlogf(z)=fx/f\implies \frac{d}{dx}log|f(z)|=f_x/f


    d2dx2logf(z)=fxxffx2f2\implies \frac{d^2}{dx^2}log|f(z)|=\frac{f_{xx}f-f^2_x}{f^2}


    ddylogf(z)=fy/f\implies \frac{d}{dy}log|f(z)|=f_y/f


    d2dy2logf(z)=fyyffy2f2\implies \frac{d^2}{dy^2}log|f(z)|=\frac{f_{yy}f-f^2_y}{f^2}


    (d2dx2+d2dy2)logf(z)=fxxffx2f2+fyyffy2f2\implies (\frac{d^2}{dx^2}+\frac{d^2}{dy^2})log|f(z)|=\frac{f_{xx}f-f^2_x}{f^2}+\frac{f_{yy}f-f^2_y}{f^2}


f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)


for analytic function:

ux=vy,uy=vxu_x=v_y,u_y=-v_x

uxx=uyy,vxx=vyyu_{xx}=-u_{yy},v_{xx}=-v_{yy}


then:

(d2dx2+d2dy2)logf(z)=f(uxx+ivxx+uyy+ivyy)((ux+ivx)2+(uy+ivy)2))(u+iv)2(\frac{d^2}{dx^2}+\frac{d^2}{dy^2})log|f(z)|=\frac{f\cdot(u_{xx}+iv_{xx}+u_{yy}+iv_{yy})-((u_x+iv_x)^2+(u_y+iv_y)^2))}{(u+iv)^2}


uxx+ivxx+uyy+ivyy=uxxivyyuxx+ivyy=0u_{xx}+iv_{xx}+u_{yy}+iv_{yy}=u_{xx}-iv_{yy}-u_{xx}+iv_{yy}=0


(ux+ivx)2+(uy+ivy)2=(ux)2+2iuxvx(vx)2+(uy)2+2iuyvy(vy)2=(u_x+iv_x)^2+(u_y+iv_y)^2=(u_x)^2+2iu_xv_x-(v_x)^2+(u_y)^2+2iu_yv_y-(v_y)^2=

=(vy)22ivyuy(uy)2+(uy)2+2ivyuy(vy)2=0=(v_y)^2-2iv_yu_y-(u_y)^2+(u_y)^2+2iv_yu_y-(v_y)^2=0


So,


(d2dx2+d2dy2)logf(z)=0(\frac{d^2}{dx^2}+\frac{d^2}{dy^2})log|f(z)|=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment