Question #216892
Evaluate 3 - 4 x DV where E is the region below z= 4 -x y and above the region in the plane xy plane and defined by 0 < X < 2 and 0< y<1
1
Expert's answer
2021-07-14T12:48:26-0400

Solution

I=V(34x)dV=010204xy(34x)dz dx dyI=\iiint_{V}{(3-4x)dV}=\int_{0}^{1}\int_{0}^{2}\int_{0}^{4-xy}{(3-4x)dz\ dx\ dy}

I=0102(34x)(4xy)dx dy=0102(1216x3xy+4x2y)dx dyI=\int_{0}^{1}\int_{0}^{2}{(3-4x)(4-xy)dx\ dy}=\int_{0}^{1}\int_{0}^{2}{(12-16x-3xy+4x^2y)dx\ dy}

02(1216x3xy+4x2y)dx= (12x8x232x2y+43x3y)x=0x=2=24326y+323y=143y8\int_{0}^{2}{(12-16x-3xy+4x^2y)dx}=\left.\ \left(12x-8x^2-\frac{3}{2}x^2y+\frac{4}{3}x^3y\right)\right|_{x=0}^{x=2}=24-32-6y+\frac{32}{3}y=\frac{14}{3}y-8

I=01(143y8)dy= (73y28y)y=0y=1=738=1735.66667I=\int_{0}^{1}\left(\frac{14}{3}y-8\right)dy=\left.\ \left(\frac{7}{3}y^2-8y\right)\right|_{y=0}^{y=1}=\frac{7}{3}-8=-\frac{17}{3}\approx-5.66667

Answer

I = -17/3 ≈ -5.66667


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS