Solution
"I=\\iiint_{V}{(3-4x)dV}=\\int_{0}^{1}\\int_{0}^{2}\\int_{0}^{4-xy}{(3-4x)dz\\ dx\\ dy}"
"I=\\int_{0}^{1}\\int_{0}^{2}{(3-4x)(4-xy)dx\\ dy}=\\int_{0}^{1}\\int_{0}^{2}{(12-16x-3xy+4x^2y)dx\\ dy}"
"\\int_{0}^{2}{(12-16x-3xy+4x^2y)dx}=\\left.\\ \\left(12x-8x^2-\\frac{3}{2}x^2y+\\frac{4}{3}x^3y\\right)\\right|_{x=0}^{x=2}=24-32-6y+\\frac{32}{3}y=\\frac{14}{3}y-8"
"I=\\int_{0}^{1}\\left(\\frac{14}{3}y-8\\right)dy=\\left.\\ \\left(\\frac{7}{3}y^2-8y\\right)\\right|_{y=0}^{y=1}=\\frac{7}{3}-8=-\\frac{17}{3}\\approx-5.66667"
Answer
I = -17/3 ≈ -5.66667
Comments
Leave a comment