Question #216695

Use a triple integral to find the volume of the given solid. The solid enclosed by the cylinder y = x^2 and the planes z = 0 and y + z = 1.


1
Expert's answer
2021-07-14T14:40:09-0400

y = x2

z = 0 and y + z = 1


The limits of x, y and z are

x = -1 to 1

y = x2 to 1

z = 0 to 1 - y


Let x2 = k



The volume of the cylinder is given by


V = \int-1\int k\int 01-y dz dy dx



V = \int-1\int k1  ( 1 - y ) dy dx


V = \int-1( y - y22\dfrac{y^2}{2} )k 1 dx


V = \int-1( 1 - k - 12\dfrac{1}{2}k22\dfrac{k^2}{2} ) dx





On substituting the value of k, we have


V = \int-1( 1 - x2 - 12\dfrac{1}{2} + x42\dfrac{x^4}{2} ) dx


V = \int-112\dfrac{1}{2} - xx42\dfrac{x^4}{2} ) dx


V = ( 12\dfrac{1}{2}x - x33\dfrac{x^3}{3} + x510\dfrac{x^5}{10} )-1 1


V = [ 12\dfrac{1}{2}(1 + 1) - (1+1)33\dfrac{(1+1)^3}{3} + (1+1)510\dfrac{(1+1)^5}{10} ]


V = [ 1 - 83\dfrac{8}{3} + 3210\dfrac{32}{10} ]


V = 1.533 cubic units.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS