Question #216174

Use the definition of the cotangent function and the quotient rule to prove if f(x)=cotx, than f'(x)= -cosec2x.


1
Expert's answer
2021-07-12T14:04:45-0400
f(x)=(cotx)=(cosxsinx)f'(x)=(\cot x)'=(\dfrac{\cos x}{\sin x})'

=(cosx)sinxcosx(sinx)sin2x=sin2xcos2xsin2x=\dfrac{(\cos x)'\sin x-\cos x(\sin x)'}{\sin^2x}=\dfrac{-\sin^2x-\cos^2x}{\sin^2x}

=(sin2x+cos2x)sin2x=1sin2x=cosec2x=\dfrac{-(\sin^2x+\cos^2x)}{\sin^2x}=\dfrac{-1}{\sin^2x}=-\cosec^2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS