Maclaurin series of function f(x) is defined as
f(x)=f(0)+1!f′(0)x+2!f′′(0)x2+3!f′′′(0)x3+4!f′′′′(0)x4+...
f(x)=10x3−3x2−5x−1
f(0)=−1
f′(x)=30x2−6x−5,f′(0)=−5
f′′(x)=60x−6,f′′(0)=−6
f′′′(x)=60,f′′′(0)=60
f(IV)(x)=f(V)(x)=f(VI)(x)=...=0
Then
f(x)=−1+1−5x+2−6x2+660x3
c0=−1,c1=−5,c2=−3,c4=10,c5=c6=...=0
f(x)=−1−5x−3x2+10x3
The radius of convergence R=INF.
Comments