Question #216140

f(x) =10x^3-3x^2-5x-1


1
Expert's answer
2021-07-12T14:03:53-0400

Maclaurin series of function f(x)f(x) is defined as


f(x)=f(0)+f(0)1!x+f(0)2!x2+f(0)3!x3+f(0)4!x4+...f(x)=f(0)+\dfrac{f'(0)}{1!}x+\dfrac{f''(0)}{2!}x^2+\dfrac{f'''(0)}{3!}x^3+\dfrac{f''''(0)}{4!}x^4+...


f(x)=10x33x25x1f(x) =10x^3-3x^2-5x-1


f(0)=1f(0)=-1


f(x)=30x26x5,f(0)=5f'(x)=30x^2-6x-5, f'(0)=-5


f(x)=60x6,f(0)=6f''(x)=60x-6, f''(0)=-6


f(x)=60,f(0)=60f'''(x)=60, f'''(0)=60


f(IV)(x)=f(V)(x)=f(VI)(x)=...=0f^{(IV)}(x)=f^{(V)}(x)=f^{(VI)}(x)=...=0


Then


f(x)=1+51x+62x2+606x3f(x)=-1+\dfrac{-5}{1}x+\dfrac{-6}{2}x^2+\dfrac{60}{6}x^3

c0=1,c1=5,c2=3,c4=10,c5=c6=...=0c_0=-1, c_1=-5, c_2=-3, c_4=10, c_5=c_6=...=0

f(x)=15x3x2+10x3f(x)=-1-5x-3x^2+10x^3

The radius of convergence R=INF.R=INF.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS