Answer to Question #215834 in Calculus for reeji

Question #215834

. Find the limits lim (π‘₯,𝑦)β†’(2,βˆ’4) 𝑦+4 π‘₯ 2π‘¦βˆ’π‘₯𝑦+4π‘₯ 2βˆ’4οΏ½


1
Expert's answer
2021-07-13T05:15:23-0400

We need to find lim(x,y)β†’lim(x,y)\to (2,βˆ’4)(2,-4) (y+4x)(2yβˆ’xy+4x)\frac {(y+4x)} {(2y-xy+4x)}


We will do direct substitution to find the limit .

== (βˆ’4+4(2))(2(βˆ’4)βˆ’2(βˆ’4)+4(2))\frac{(-4+4(2))} {(2(-4)-2(-4)+4(2))}


=(βˆ’4+8)(βˆ’8+8+8)=\frac {(-4+8)} {(-8+8+8)}


=48=\frac 4 8 =12=\frac 1 2 (ans)







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment