Question #215515

u cos y sinh x, sin y cosh x satisfy laplace equation?



1
Expert's answer
2021-07-16T08:16:28-0400
u=cosysinhx+sinycoshxu=\cos y\sinh x+\sin y\cosh x

ux=cosycoshx+sinysinhxu_x=\cos y\cosh x+\sin y\sinh x

uxx=cosysinhx+sinycoshxu_{xx}=\cos y\sinh x+\sin y\cosh x


uy=sinysinhx+cosycoshxu_y=-\sin y\sinh x+\cos y\cosh x

uyy=cosysinhxsinycoshxu_{yy}=-\cos y\sinh x-\sin y\cosh x

Laplace equation


uxx+uyy=0u_{xx}+u_{yy}=0

Check


cosysinhx+sinycoshx\cos y\sinh x+\sin y\cosh x


+(cosysinhxsinycoshx)=0,True+(-\cos y\sinh x-\sin y\cosh x)=0,True

Therefore the function u=cosysinhx+sinycoshxu=\cos y\sinh x+\sin y\cosh x satisfies the Laplace equation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS