The general solution can be written as y=yh+yp.
Homogeneous differential equation
y′′+2y=0 The characteristic polynomial
r2+2=0
r1=−i2,r2=i2
yh=c1cos(2x)+c2sin(2x) Let yp=Ax+B. Then yp′′=0
2(Ax+B)=−x
A=−21,B=0
yp=−21x
y=c1cos(2x)+c2sin(2x)−21x
y(0)=0:c1cos(2(0))+c2sin(2(0))−21(0)=0
c1=0,y=c2sin(2x)−21x
y′=c2cos(2x)−21
y(1)+y′(1)=0
c2sin(2(1))−21(1)+c2cos(2(1))−21=0
c2=sin(2)+cos(2)1 Then
y=sin(2)+cos(2)1sin(2x)−21x
Comments