Solve the boundary value problem
y''+2y= −x
y(0)=0, y(1)+y'(1)=0
The general solution can be written as "y=y_h+y_p."
Homogeneous differential equation
The characteristic polynomial
"r_1=-i\\sqrt{2}, r_2=i\\sqrt{2}"
"y_h=c_1\\cos (\\sqrt{2}x)+c_2\\sin (\\sqrt{2}x)"
Let "y_p=Ax+B." Then "y_p''=0"
"A=-\\dfrac{1}{2}, B=0"
"y_p=-\\dfrac{1}{2}x"
"y=c_1\\cos (\\sqrt{2}x)+c_2\\sin (\\sqrt{2}x)-\\dfrac{1}{2}x"
"y(0)=0:c_1\\cos (\\sqrt{2}(0))+c_2\\sin (\\sqrt{2}(0))-\\dfrac{1}{2}(0)=0"
"c_1=0, y=c_2\\sin (\\sqrt{2}x)-\\dfrac{1}{2}x"
"y'=c_2\\cos (\\sqrt{2}x)-\\dfrac{1}{2}"
"y(1)+y'(1)=0"
"c_2\\sin (\\sqrt{2}(1))-\\dfrac{1}{2}(1)+c_2\\cos (\\sqrt{2}(1))-\\dfrac{1}{2}=0"
"c_2=\\dfrac{1}{\\sin(\\sqrt{2})+\\cos(\\sqrt{2})}"
Then
Comments
Leave a comment