Question #215749

Solve the boundary value problem

y''+2y= −x

y(0)=0, y(1)+y'(1)=0


1
Expert's answer
2021-07-12T13:05:00-0400

The general solution can be written as y=yh+yp.y=y_h+y_p.

Homogeneous differential equation


y+2y=0y''+2y=0

The characteristic polynomial 


r2+2=0r^2+2=0

r1=i2,r2=i2r_1=-i\sqrt{2}, r_2=i\sqrt{2}

yh=c1cos(2x)+c2sin(2x)y_h=c_1\cos (\sqrt{2}x)+c_2\sin (\sqrt{2}x)

Let yp=Ax+B.y_p=Ax+B. Then yp=0y_p''=0


2(Ax+B)=x2(Ax+B)=-x

A=12,B=0A=-\dfrac{1}{2}, B=0

yp=12xy_p=-\dfrac{1}{2}x

y=c1cos(2x)+c2sin(2x)12xy=c_1\cos (\sqrt{2}x)+c_2\sin (\sqrt{2}x)-\dfrac{1}{2}x

y(0)=0:c1cos(2(0))+c2sin(2(0))12(0)=0y(0)=0:c_1\cos (\sqrt{2}(0))+c_2\sin (\sqrt{2}(0))-\dfrac{1}{2}(0)=0

c1=0,y=c2sin(2x)12xc_1=0, y=c_2\sin (\sqrt{2}x)-\dfrac{1}{2}x

y=c2cos(2x)12y'=c_2\cos (\sqrt{2}x)-\dfrac{1}{2}

y(1)+y(1)=0y(1)+y'(1)=0

c2sin(2(1))12(1)+c2cos(2(1))12=0c_2\sin (\sqrt{2}(1))-\dfrac{1}{2}(1)+c_2\cos (\sqrt{2}(1))-\dfrac{1}{2}=0

c2=1sin(2)+cos(2)c_2=\dfrac{1}{\sin(\sqrt{2})+\cos(\sqrt{2})}

Then


y=1sin(2)+cos(2)sin(2x)12xy=\dfrac{1}{\sin(\sqrt{2})+\cos(\sqrt{2})}\sin (\sqrt{2}x)-\dfrac{1}{2}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS