Solution;
1.Find r' and T for r=ht2,1,ti
r'="\\frac {d}{dt}" r=2ht,0,i
T="\\frac{r'}{|r'|}"
"|r'|=\\sqrt{(2ht)^2+0^2+i^2}=\\sqrt{4h^2t^2-1}"
T="\\frac{2ht}{\\sqrt{4h^2t^2-1}},0,\\frac{i}{\\sqrt{4h^2t^2-1}}"
2.Find r' and T for r=hcost ,sin2t ,t2i
r'="\\frac{d}{dt}"r=-hsint,2cos2t,2it
T="\\frac{r'}{|r'|}"
"|r'|=\\sqrt{(-hsint)^2+(2cos2t)^2+(2it)^2}" ="\\sqrt{h^2sin^2t+4cos^2(2t)-4t^2}"
T="\\frac{-hsint}{\\sqrt{h^2sin^2t+4cos^2(2t)-4t^2}}," "\\frac{2cos2t}{\\sqrt{h^2sin^2t+4cos^2(2t)-4t^2}}," "\\frac{2it}{\\sqrt{h^2sin^2t+4cos^2(2t)-4t^2}}"
Comments
Leave a comment