Solution;
1.Find r' and T for r=ht2,1,ti
r'=dtd r=2ht,0,i
T=∣r′∣r′
∣r′∣=(2ht)2+02+i2=4h2t2−1
T=4h2t2−12ht,0,4h2t2−1i
2.Find r' and T for r=hcost ,sin2t ,t2i
r'=dtdr=-hsint,2cos2t,2it
T=∣r′∣r′
∣r′∣=(−hsint)2+(2cos2t)2+(2it)2 =h2sin2t+4cos2(2t)−4t2
T=h2sin2t+4cos2(2t)−4t2−hsint, h2sin2t+4cos2(2t)−4t22cos2t, h2sin2t+4cos2(2t)−4t22it
Comments