Question #215072
Prove that the map T: D to R^2 defined by T(x,y)= (u,v) is not invertible where u=x cos y , v= x sin y.
1
Expert's answer
2021-07-11T16:30:11-0400

T(x, y)= (u, v)


where u = x cos y and v = x sin y


To check whether the mapping T: D \rightarrow R2 is invertible or not we will find the Jacobian.



JT(x,y)J_T(x, y) = uxuyvxvy\begin{vmatrix} \dfrac{ ∂u}{ ∂x} & \dfrac{ ∂u}{ ∂y} \\ \dfrac{ ∂v}{ ∂x} & \dfrac{ ∂v}{ ∂y} \end{vmatrix}



Now


ux\dfrac{ ∂u}{ ∂x} = cos y



uy\dfrac{ ∂u}{ ∂y} = - x sin y



vx\dfrac{ ∂v}{ ∂x} = sin y



vy\dfrac{ ∂v}{ ∂y} = x cos y




JT(x,y)J_T(x, y) = cos yx sin ysin yx cos y\begin{vmatrix} cos \ y & - x \ sin \ y \\ sin \ y & x \ cos \ y \end{vmatrix}


JT(x,y)J_T(x, y) = x cos2 y + x sin2 y



JT(x,y)J_T(x, y) = x


Now the inverse of T(x, y)= (u, v)  will be the inverse of matrix JT(x,y)J_T(x, y).  But according to the domain of T(x, y) x can be zero. So the function will not be invertible as matrix JT (x, y) will become singular . Hence, we say that T(x, y) = (u, v) is not invertible.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS