T(x, y)= (u, v)
where u = x cos y and v = x sin y
To check whether the mapping T: D "\\rightarrow" R2 is invertible or not we will find the Jacobian.
"J_T(x, y)" = "\\begin{vmatrix}\n \\dfrac{ \u2202u}{ \u2202x} & \\dfrac{ \u2202u}{ \u2202y} \\\\ \n \\dfrac{ \u2202v}{ \u2202x} & \\dfrac{ \u2202v}{ \u2202y}\n\\end{vmatrix}"
Now
"\\dfrac{ \u2202u}{ \u2202x}" = cos y
"\\dfrac{ \u2202u}{ \u2202y}" = - x sin y
"\\dfrac{ \u2202v}{ \u2202x}" = sin y
"\\dfrac{ \u2202v}{ \u2202y}" = x cos y
"J_T(x, y)" = "\\begin{vmatrix}\n cos \\ y & - x \\ sin \\ y \\\\ \n sin \\ y & x \\ cos \\ y\n\\end{vmatrix}"
"J_T(x, y)" = x cos2 y + x sin2 y
"J_T(x, y)" = x
Now the inverse of T(x, y)= (u, v) will be the inverse of matrix "J_T(x, y)". But according to the domain of T(x, y) x can be zero. So the function will not be invertible as matrix JT (x, y) will become singular . Hence, we say that T(x, y) = (u, v) is not invertible.
Comments
Leave a comment