At first, we have the integral
I = ∫ x 4 4 − x 2 d x I=\int \frac{x^4}{\sqrt{4-x^2}}dx I = ∫ 4 − x 2 x 4 d x
Then if we use trigonometric substitution
s i n θ = 4 − x 2 2 ⟹ 4 − x 2 = 2 s i n θ c o s θ = x 2 t a n θ = 4 − x 2 x x = 2 c o s θ ⟹ d x = − 2 s i n θ d θ sin\, \theta =\frac{\sqrt{4-x^2}}{2} \implies \sqrt{4-x^2} = 2\,sin\, \theta \\ cos\, \theta =\frac{x}{2} \\ tan\, \theta =\frac{\sqrt{4-x^2}}{x} \\ x=2\,cos\, \theta \implies dx=-2\,sin\,\theta\,d\theta s in θ = 2 4 − x 2 ⟹ 4 − x 2 = 2 s in θ cos θ = 2 x t an θ = x 4 − x 2 x = 2 cos θ ⟹ d x = − 2 s in θ d θ
we find that from there we transform the integral to:
I = ∫ x 4 4 − x 2 d x = ∫ ( 2 c o s θ ) 4 2 s i n θ ( − 2 s i n θ d θ ) I=\int \frac{x^4}{\sqrt{4-x^2}}dx=\int \frac{(2\,cos\, \theta)^4}{\cancel{2sin\,\theta}}(-\cancel{2\,sin\,\theta}d\theta) I = ∫ 4 − x 2 x 4 d x = ∫ 2 s in θ ( 2 cos θ ) 4 ( − 2 s in θ d θ )
⟹ I = − 2 4 ∫ c o s 4 θ d θ \implies I=-2^4\int cos^4\theta \, d\theta ⟹ I = − 2 4 ∫ co s 4 θ d θ
From there, to solve the trigonometric integral we use the double angle formula for the cosine:
c o s 2 θ = 1 2 ( 1 + c o s ( 2 θ ) ) c o s 4 θ = ( 1 2 ( 1 + c o s ( 2 θ ) ) ) 2 c o s 4 ( θ ) = 1 4 ( 1 + 2 c o s ( 2 θ ) + c o s 2 ( 2 θ ) ) c o s 4 ( θ ) = 1 4 ( 1 + 2 c o s ( 2 θ ) + 1 2 ( 1 + c o s ( 4 θ ) ) ) cos^2\theta=\frac{1}{2}(1 + cos(2\theta)) \\ cos^4\theta=(\frac{1}{2}(1 + cos(2\theta)))^2 \\ cos^4(\theta) = \frac{1}{4}(1 + 2cos(2\theta) + cos^2(2\theta)) \\ cos^4(\theta) = \frac{1}{4}(1 + 2cos(2\theta) + \frac{1}{2}(1 + cos(4\theta))) co s 2 θ = 2 1 ( 1 + cos ( 2 θ )) co s 4 θ = ( 2 1 ( 1 + cos ( 2 θ )) ) 2 co s 4 ( θ ) = 4 1 ( 1 + 2 cos ( 2 θ ) + co s 2 ( 2 θ )) co s 4 ( θ ) = 4 1 ( 1 + 2 cos ( 2 θ ) + 2 1 ( 1 + cos ( 4 θ )))
⟹ c o s 4 ( θ ) = 3 8 + 1 2 c o s ( 2 θ ) + 1 8 c o s ( 4 θ ) \implies cos^4(\theta) = \frac{3}{8} + \frac{1}{2}cos(2\theta) + \frac{1}{8}cos(4\theta) ⟹ co s 4 ( θ ) = 8 3 + 2 1 cos ( 2 θ ) + 8 1 cos ( 4 θ )
We solve the integral and we have to use the formulas for the double angle of the sines to then make the proper algebra and find the answer:
I = − 2 4 ∫ c o s 4 θ d θ = − 2 4 ∫ ( 3 8 + 1 2 c o s ( 2 θ ) + 1 8 c o s ( 4 θ ) ) d θ I=-2^4\int cos^4\theta \, d\theta=-2^4\int ( \frac{3}{8} + \frac{1}{2}cos(2\theta) + \frac{1}{8}cos(4\theta))d\theta I = − 2 4 ∫ co s 4 θ d θ = − 2 4 ∫ ( 8 3 + 2 1 cos ( 2 θ ) + 8 1 cos ( 4 θ )) d θ
I = − 2 4 ( 3 8 ∫ d θ + 1 2 ∫ c o s ( 2 θ ) d θ + 1 8 ∫ c o s ( 4 θ ) d θ ) I=-2^4(\frac{3}{8}\int d\theta + \frac{1}{2}\int cos(2\theta) d\theta + \frac{1}{8}\int cos(4\theta)d\theta) I = − 2 4 ( 8 3 ∫ d θ + 2 1 ∫ cos ( 2 θ ) d θ + 8 1 ∫ cos ( 4 θ ) d θ )
I = − 2 4 ( 3 8 θ + 1 4 s i n ( 2 θ ) + 1 32 s i n ( 4 θ ) + C ) I = − 2 4 ( 3 8 θ + 1 4 ( 2 s i n θ c o s θ ) + 1 32 ( 2 s i n ( 2 θ ) c o s ( 2 θ ) ) + C ) I = − 2 4 ( 3 8 θ + 1 2 s i n θ c o s θ + 1 16 ( 2 s i n θ c o s θ ) ( 1 − 2 s i n 2 θ ) + C ) I = − 2 4 ( 3 8 θ + 1 2 s i n θ c o s θ + 1 16 ( 2 s i n θ c o s θ − 4 s i n 3 θ c o s θ ) + C ) I = − 2 4 ( 3 8 θ + 1 2 s i n θ c o s θ + 1 8 s i n θ c o s θ − 1 4 s i n 3 θ c o s θ + C ) I=-2^4 (\frac{3}{8}\theta + \frac{1}{4}sin(2\theta ) + \frac{1}{32}sin(4\theta ) + C)
\\ I=-2^4 (\frac{3}{8}\theta + \frac{1}{4}(2sin\theta cos\theta ) + \frac{1}{32}(2sin(2\theta) cos(2\theta)) + C)
\\ I=-2^4 (\frac{3}{8}\theta + \frac{1}{2}sin\theta cos\theta + \frac{1}{16}(2sin\theta cos\theta )(1-2sin^2\theta) + C)
\\ I=-2^4 (\frac{3}{8}\theta + \frac{1}{2}sin\theta cos\theta + \frac{1}{16}(2sin\theta cos\theta - 4sin^3\theta cos\theta) + C)
\\ I=-2^4 (\frac{3}{8}\theta + \frac{1}{2}sin\theta cos\theta + \frac{1}{8}sin\theta cos\theta - \frac{1}{4}sin^3\theta cos\theta + C) I = − 2 4 ( 8 3 θ + 4 1 s in ( 2 θ ) + 32 1 s in ( 4 θ ) + C ) I = − 2 4 ( 8 3 θ + 4 1 ( 2 s in θ cos θ ) + 32 1 ( 2 s in ( 2 θ ) cos ( 2 θ )) + C ) I = − 2 4 ( 8 3 θ + 2 1 s in θ cos θ + 16 1 ( 2 s in θ cos θ ) ( 1 − 2 s i n 2 θ ) + C ) I = − 2 4 ( 8 3 θ + 2 1 s in θ cos θ + 16 1 ( 2 s in θ cos θ − 4 s i n 3 θ cos θ ) + C ) I = − 2 4 ( 8 3 θ + 2 1 s in θ cos θ + 8 1 s in θ cos θ − 4 1 s i n 3 θ cos θ + C )
⟹ I = − 6 θ − 10 s i n θ c o s θ + 4 s i n 3 θ c o s θ + C \implies I=-6\theta -10sin\theta cos\theta +4sin^3\theta cos\theta + C ⟹ I = − 6 θ − 10 s in θ cos θ + 4 s i n 3 θ cos θ + C
We only have to substitute to get back to the form with x as the variable to find the integral:
I = − 6 a r c c o s ( x 2 ) − 5 x 4 − x 2 2 + x ( 4 − x 2 ) 3 4 + C I = − 6 a r c c o s ( x 2 ) + 4 − x 2 ( − 5 x 2 + x ( 4 − x 2 ) 4 ) + C I = − 6 a r c c o s ( x 2 ) − 4 − x 2 ( 3 x 2 + x 3 4 ) + C I=-6\,arc cos (\frac{x}{2}) -\frac{5x\sqrt{4-x^2}}{2} +\frac{x(\sqrt{4-x^2})^3}{4} + C
\\ I=-6\,arc cos (\frac{x}{2}) +\sqrt{4-x^2}(-\frac{5x}{2} +\frac{x(4-x^2)}{4} ) + C
\\I = -6\,arc cos (\frac{x}{2}) -\sqrt{4-x^2}(\frac{3x}{2} +\frac{x^3}{4} ) + C I = − 6 a rccos ( 2 x ) − 2 5 x 4 − x 2 + 4 x ( 4 − x 2 ) 3 + C I = − 6 a rccos ( 2 x ) + 4 − x 2 ( − 2 5 x + 4 x ( 4 − x 2 ) ) + C I = − 6 a rccos ( 2 x ) − 4 − x 2 ( 2 3 x + 4 x 3 ) + C
In conclusion, ∫ x 4 4 − x 2 d x = − 6 a r c c o s ( x 2 ) − 4 − x 2 ( 3 x 2 + x 3 4 ) + C \int \frac{x^4}{\sqrt{4-x^2}}dx= -6\,arc cos (\frac{x}{2}) -\sqrt{4-x^2}(\frac{3x}{2} +\frac{x^3}{4} ) + C ∫ 4 − x 2 x 4 d x = − 6 a rccos ( 2 x ) − 4 − x 2 ( 2 3 x + 4 x 3 ) + C .
Reference:
Varberg, D. E., Purcell, E. J., & Rigdon, S. E. (2007). Calculus with differential equations . Pearson/Prentice Hall.
Comments