At first, we have the integral
I=∫4−x2x4dx
Then if we use trigonometric substitution
sinθ=24−x2⟹4−x2=2sinθcosθ=2xtanθ=x4−x2x=2cosθ⟹dx=−2sinθdθ
we find that from there we transform the integral to:
I=∫4−x2x4dx=∫2sinθ(2cosθ)4(−2sinθdθ)
⟹I=−24∫cos4θdθ
From there, to solve the trigonometric integral we use the double angle formula for the cosine:
cos2θ=21(1+cos(2θ))cos4θ=(21(1+cos(2θ)))2cos4(θ)=41(1+2cos(2θ)+cos2(2θ))cos4(θ)=41(1+2cos(2θ)+21(1+cos(4θ)))
⟹cos4(θ)=83+21cos(2θ)+81cos(4θ)
We solve the integral and we have to use the formulas for the double angle of the sines to then make the proper algebra and find the answer:
I=−24∫cos4θdθ=−24∫(83+21cos(2θ)+81cos(4θ))dθ
I=−24(83∫dθ+21∫cos(2θ)dθ+81∫cos(4θ)dθ)
I=−24(83θ+41sin(2θ)+321sin(4θ)+C)I=−24(83θ+41(2sinθcosθ)+321(2sin(2θ)cos(2θ))+C)I=−24(83θ+21sinθcosθ+161(2sinθcosθ)(1−2sin2θ)+C)I=−24(83θ+21sinθcosθ+161(2sinθcosθ−4sin3θcosθ)+C)I=−24(83θ+21sinθcosθ+81sinθcosθ−41sin3θcosθ+C)
⟹I=−6θ−10sinθcosθ+4sin3θcosθ+C
We only have to substitute to get back to the form with x as the variable to find the integral:
I=−6arccos(2x)−25x4−x2+4x(4−x2)3+CI=−6arccos(2x)+4−x2(−25x+4x(4−x2))+CI=−6arccos(2x)−4−x2(23x+4x3)+C
In conclusion, ∫4−x2x4dx=−6arccos(2x)−4−x2(23x+4x3)+C .
Reference:
- Varberg, D. E., Purcell, E. J., & Rigdon, S. E. (2007). Calculus with differential equations. Pearson/Prentice Hall.
Comments