Evaluate integral fraction numerator x to the power of 4 over denominator square root of 4 minus x squared end root end fraction d x
At first, we have the integral
"I=\\int \\frac{x^4}{\\sqrt{4-x^2}}dx"
Then if we use trigonometric substitution
"sin\\, \\theta =\\frac{\\sqrt{4-x^2}}{2} \\implies \\sqrt{4-x^2} = 2\\,sin\\, \\theta \\\\ cos\\, \\theta =\\frac{x}{2} \\\\ tan\\, \\theta =\\frac{\\sqrt{4-x^2}}{x} \\\\ x=2\\,cos\\, \\theta \\implies dx=-2\\,sin\\,\\theta\\,d\\theta"
we find that from there we transform the integral to:
"I=\\int \\frac{x^4}{\\sqrt{4-x^2}}dx=\\int \\frac{(2\\,cos\\, \\theta)^4}{\\cancel{2sin\\,\\theta}}(-\\cancel{2\\,sin\\,\\theta}d\\theta)"
"\\implies I=-2^4\\int cos^4\\theta \\, d\\theta"
From there, to solve the trigonometric integral we use the double angle formula for the cosine:
"cos^2\\theta=\\frac{1}{2}(1 + cos(2\\theta)) \\\\ cos^4\\theta=(\\frac{1}{2}(1 + cos(2\\theta)))^2 \\\\ cos^4(\\theta) = \\frac{1}{4}(1 + 2cos(2\\theta) + cos^2(2\\theta)) \\\\ cos^4(\\theta) = \\frac{1}{4}(1 + 2cos(2\\theta) + \\frac{1}{2}(1 + cos(4\\theta)))"
"\\implies cos^4(\\theta) = \\frac{3}{8} + \\frac{1}{2}cos(2\\theta) + \\frac{1}{8}cos(4\\theta)"
We solve the integral and we have to use the formulas for the double angle of the sines to then make the proper algebra and find the answer:
"I=-2^4\\int cos^4\\theta \\, d\\theta=-2^4\\int ( \\frac{3}{8} + \\frac{1}{2}cos(2\\theta) + \\frac{1}{8}cos(4\\theta))d\\theta"
"I=-2^4(\\frac{3}{8}\\int d\\theta + \\frac{1}{2}\\int cos(2\\theta) d\\theta + \\frac{1}{8}\\int cos(4\\theta)d\\theta)"
"I=-2^4 (\\frac{3}{8}\\theta + \\frac{1}{4}sin(2\\theta ) + \\frac{1}{32}sin(4\\theta ) + C)\n\\\\ I=-2^4 (\\frac{3}{8}\\theta + \\frac{1}{4}(2sin\\theta cos\\theta ) + \\frac{1}{32}(2sin(2\\theta) cos(2\\theta)) + C)\n\\\\ I=-2^4 (\\frac{3}{8}\\theta + \\frac{1}{2}sin\\theta cos\\theta + \\frac{1}{16}(2sin\\theta cos\\theta )(1-2sin^2\\theta) + C)\n\\\\ I=-2^4 (\\frac{3}{8}\\theta + \\frac{1}{2}sin\\theta cos\\theta + \\frac{1}{16}(2sin\\theta cos\\theta - 4sin^3\\theta cos\\theta) + C)\n\\\\ I=-2^4 (\\frac{3}{8}\\theta + \\frac{1}{2}sin\\theta cos\\theta + \\frac{1}{8}sin\\theta cos\\theta - \\frac{1}{4}sin^3\\theta cos\\theta + C)"
"\\implies I=-6\\theta -10sin\\theta cos\\theta +4sin^3\\theta cos\\theta + C"
We only have to substitute to get back to the form with x as the variable to find the integral:
"I=-6\\,arc cos (\\frac{x}{2}) -\\frac{5x\\sqrt{4-x^2}}{2} +\\frac{x(\\sqrt{4-x^2})^3}{4} + C \n\\\\ I=-6\\,arc cos (\\frac{x}{2}) +\\sqrt{4-x^2}(-\\frac{5x}{2} +\\frac{x(4-x^2)}{4} ) + C \n\\\\I = -6\\,arc cos (\\frac{x}{2}) -\\sqrt{4-x^2}(\\frac{3x}{2} +\\frac{x^3}{4} ) + C"
In conclusion, "\\int \\frac{x^4}{\\sqrt{4-x^2}}dx= -6\\,arc cos (\\frac{x}{2}) -\\sqrt{4-x^2}(\\frac{3x}{2} +\\frac{x^3}{4} ) + C" .
Reference:
Comments
Leave a comment