Question #214888

Differentiate the following with regard to x :

y=x^4 times sin x


1
Expert's answer
2021-07-08T09:36:14-0400

Given y=x4sinxy=x^4 sin x


Using chain rule, \frac{}{} if y= uv

dydx=udvdx+vdudx\frac{dy}{dx} = u\frac{dv}{dx}+v\frac{du}{dx}


Then,

dydx=x4dsinxdx+sinxdx4dx\frac{dy}{dx} = x^4\frac{d sinx}{dx}+sinx\frac{dx^4}{dx}


dydx=x4cosx+4x3sinx\frac{dy}{dx} = x^4 cosx + 4x^3sinx


dydx=x3(xcosx+4sinx)\frac{dy}{dx} = x^3(xcosx+4sinx)






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS