Differentiate the following with regard to x :
y=x^4 times sin x
Given y=x4sinxy=x^4 sin xy=x4sinx
Using chain rule, \frac{}{} if y= uv
dydx=udvdx+vdudx\frac{dy}{dx} = u\frac{dv}{dx}+v\frac{du}{dx}dxdy=udxdv+vdxdu
Then,
dydx=x4dsinxdx+sinxdx4dx\frac{dy}{dx} = x^4\frac{d sinx}{dx}+sinx\frac{dx^4}{dx}dxdy=x4dxdsinx+sinxdxdx4
dydx=x4cosx+4x3sinx\frac{dy}{dx} = x^4 cosx + 4x^3sinxdxdy=x4cosx+4x3sinx
dydx=x3(xcosx+4sinx)\frac{dy}{dx} = x^3(xcosx+4sinx)dxdy=x3(xcosx+4sinx)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments