Differentiate the following with regard to x :
y=x^4 times sin x
Given "y=x^4 sin x"
Using chain rule, "\\frac{}{}" if y= uv
"\\frac{dy}{dx} = u\\frac{dv}{dx}+v\\frac{du}{dx}"
Then,
"\\frac{dy}{dx} = x^4\\frac{d sinx}{dx}+sinx\\frac{dx^4}{dx}"
"\\frac{dy}{dx} = x^4 cosx + 4x^3sinx"
"\\frac{dy}{dx} = x^3(xcosx+4sinx)"
Comments
Leave a comment