Differentiate the following with regard to x
y=ln( square toot X multiple e^x^2)
"y=ln( \\sqrt {x} \\times e^{x^2})"
Let "u=\\sqrt {x} \\times e^{x^2}\\implies y=ln(u)\\implies {dy\\over du}={1\\over u}"
Let "f=\\sqrt x=x^{1\\over 2} \\implies f'={1\\over 2}x^{{1\\over 2}-1}={1\\over 2}x^{-{1\\over 2}}"
Let "g=e^{x^2} \\implies g'=2xe^{x^2}"
We then use product rule of differentiation to differentiate "u=\\sqrt {x} \\times e^{x^2}" with respect to "x"
"{du \\over dx}=f'g+fg'"
"={1\\over 2}x^{-{1\\over 2}}e^{x^2}+\\sqrt x(2xe^{x^2})"
We then use chain rule of differentiation to differentiate "y=ln( \\sqrt {x} \\times e^{x^2})" with respect to "x"
"{dy\\over dx}={dy\\over du}\\times{du\\over dx}"
"={1\\over u}\\times({1\\over 2}x^{-{1\\over 2}}e^{x^2}+\\sqrt x(2xe^{x^2}))"
"={1\\over \\sqrt {x} \\times e^{x^2}}\\times({1\\over 2}x^{-{1\\over 2}}e^{x^2}+\\sqrt x(2xe^{x^2}))"
"={1\\over \\sqrt {x} \\times e^{x^2}}\\times({1\\over 2(\\sqrt x)}e^{x^2}+\\sqrt x(2xe^{x^2}))"
"={e^{x^2}\\over 2xe^{x^2}}+{\\sqrt x(2xe^{x^2}\\over \\sqrt x(e^{x^2})}"
"={1\\over 2x}+2x"
"\\therefore {dy\\over dx}={1+4x^2\\over 2x}"
Comments
Leave a comment