y = l n ( x × e x 2 ) y=ln( \sqrt {x} \times e^{x^2}) y = l n ( x × e x 2 )
Let u = x × e x 2 ⟹ y = l n ( u ) ⟹ d y d u = 1 u u=\sqrt {x} \times e^{x^2}\implies y=ln(u)\implies {dy\over du}={1\over u} u = x × e x 2 ⟹ y = l n ( u ) ⟹ d u d y = u 1
Let f = x = x 1 2 ⟹ f ′ = 1 2 x 1 2 − 1 = 1 2 x − 1 2 f=\sqrt x=x^{1\over 2} \implies f'={1\over 2}x^{{1\over 2}-1}={1\over 2}x^{-{1\over 2}} f = x = x 2 1 ⟹ f ′ = 2 1 x 2 1 − 1 = 2 1 x − 2 1
Let g = e x 2 ⟹ g ′ = 2 x e x 2 g=e^{x^2} \implies g'=2xe^{x^2} g = e x 2 ⟹ g ′ = 2 x e x 2
We then use product rule of differentiation to differentiate u = x × e x 2 u=\sqrt {x} \times e^{x^2} u = x × e x 2 with respect to x x x
d u d x = f ′ g + f g ′ {du \over dx}=f'g+fg' d x d u = f ′ g + f g ′
= 1 2 x − 1 2 e x 2 + x ( 2 x e x 2 ) ={1\over 2}x^{-{1\over 2}}e^{x^2}+\sqrt x(2xe^{x^2}) = 2 1 x − 2 1 e x 2 + x ( 2 x e x 2 )
We then use chain rule of differentiation to differentiate y = l n ( x × e x 2 ) y=ln( \sqrt {x} \times e^{x^2}) y = l n ( x × e x 2 ) with respect to x x x
d y d x = d y d u × d u d x {dy\over dx}={dy\over du}\times{du\over dx} d x d y = d u d y × d x d u
= 1 u × ( 1 2 x − 1 2 e x 2 + x ( 2 x e x 2 ) ) ={1\over u}\times({1\over 2}x^{-{1\over 2}}e^{x^2}+\sqrt x(2xe^{x^2})) = u 1 × ( 2 1 x − 2 1 e x 2 + x ( 2 x e x 2 ))
= 1 x × e x 2 × ( 1 2 x − 1 2 e x 2 + x ( 2 x e x 2 ) ) ={1\over \sqrt {x} \times e^{x^2}}\times({1\over 2}x^{-{1\over 2}}e^{x^2}+\sqrt x(2xe^{x^2})) = x × e x 2 1 × ( 2 1 x − 2 1 e x 2 + x ( 2 x e x 2 ))
= 1 x × e x 2 × ( 1 2 ( x ) e x 2 + x ( 2 x e x 2 ) ) ={1\over \sqrt {x} \times e^{x^2}}\times({1\over 2(\sqrt x)}e^{x^2}+\sqrt x(2xe^{x^2})) = x × e x 2 1 × ( 2 ( x ) 1 e x 2 + x ( 2 x e x 2 ))
= e x 2 2 x e x 2 + x ( 2 x e x 2 x ( e x 2 ) ={e^{x^2}\over 2xe^{x^2}}+{\sqrt x(2xe^{x^2}\over \sqrt x(e^{x^2})} = 2 x e x 2 e x 2 + x ( e x 2 ) x ( 2 x e x 2
= 1 2 x + 2 x ={1\over 2x}+2x = 2 x 1 + 2 x
∴ d y d x = 1 + 4 x 2 2 x \therefore {dy\over dx}={1+4x^2\over 2x} ∴ d x d y = 2 x 1 + 4 x 2
Comments